5 PRINCIPLES OF CHEMICAL PROCESS CONTROL
by
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5.1 Introduction

The task of process control

Modern, technically advanced chemical industry cannot work without process
control.

Process control is applied in order to

(i) maintain the value of process variables eliminating external disturbances, and
thereby ensuring stable operation;

(ii) vary the value of process variables as a function of a measurement or time,
or according to an optimizing function;

(iii) satisfy various constraints, e.g. prevent flooding in an extraction column.

The so-called control system, which can achieve these tasks, consists of well-
designed equipment (the control hardware: controllers, control valves, valve mo-

tors, measuring devices, computers, etc.), as well as trained designers and opera-
tors.

The methods of control

The outlet temperature of the steam-heated heat exchanger in Fig. 5.1 is to be
held constant in spite of variations in feed rate and feed temperature. This can be
accomplished in two ways:

_(a) measuring the outlet temperature and manipulating steam rate (feedback);
(b) measuring feed temperature and manipulating steam rate (feedforward).
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Fig. 5.1. Control of a heat exchanger: (a) feedback, (b) feedforward
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In case (a) the measured value depends on the manipulation, in case (b) it does
not. This is the basic difference between feedback and feedforward control.

Feedback control is able to eliminate the effects of changes in both feed tem-
perature and feed rate, or any other disturbance (e.g. variation in steam pressure).

Feedforward control can eliminate only the effect of the disturbance on the
measurement to which it applies; in some instances it does not even do that. In our
heat exchanger example of Fig. 5.1, if the inlet temperature rises to a value for
which the steam valve has to be closed down, the return of the outlet temperature
to specification is not guaranteed. This is the main reason why feedforward is
always used in combination with feedback.

Feedback has the disadvantage of requiring an offset in the control variable
before control action. This implies the other main disadvantage of feedback: in
case of erroneous application, feedback control may cause instability of the process
controlled. :

Stability

The definition of stability is known from mechanics. A process is stable if after
a pulse-like disturbance it returns within some time to its original state. A step-like
disturbance may force the stable system into a new steady state (or back to the
original steady state, see Fig. 5.2), but th- output of an unstable process will
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Fig. 5.2. Stable and unstable process responses
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increase (or decrease) without limit (or until it reaches a natural limit, e.g. liquid
level in a vessel will rise until it overflows). Some unstable processes show periodic
instability: after a disturbance their output oscillates with increasing amplitude. At
the stability limit the amplitude of the oscillations is constant.

Chemical processes are usually stable, but some unstable ones do exist. For
example, irreversible exothermic reactions can be unstable and a reactor in which
such a reaction takes place can only be operated in the steady state by the use of
control.

The controlled process and its variables

A process has input and output variables: the outputs are dependent on the inputs,
and on the characteristics of the process.

The general structure of a process is shown in Fig. 5.3.

The output variable to be controlled is the controlled variable. In general, it
ought to be measured in order to control it; consider the output temperature of the
heat exchanger in Fig. 5.1, for instance. However, it may occur that direct measure-
ment of a controlled variable is impossible, e.g. the internal vapour velocity in a
distillation column. In such cases, the variable is computed from inferential mea-
surements.

The control variable is maintained at its desired value by changing a manipulat-
ed variable, thus eliminating the effect of uncontrolled variations in external load
variables or disturbances. Both load and manipulated variables are inputs to the
process.

Consider the heat exchanger in Fig. 5.7 In this example,

(?) the controlled variable is the output temperature,
(i) the manipulated variable is the flow rate of the heating steam, and
(ii) the load variables are the feed flow rate,

the feed temperature, etc.
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Fig. 5.3. Process and input/output variables
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Fig. 5.4. Distillation column with possible manipulated variables

A system with one controlled output and one manipulated input is a Single
Input, Single Output (SISO) system.

Many chemical processes have several controlled outputs and several possible
manipulated inputs. A typical example is a distillation column. These Multiple
Input, Multiple Output (MIMO) systems are a challenge to chemical engineers.
They must consider the problems of: degrees of freedom (generally one controlled
variable needs one manipulated variable); selection of the appropriate controlled
variables, measurements and manipulations; proper pairing of controlled and
manipulated variables.

Consider the distillation column in Fig. 5.4. The control objective is to obtain
specified head and bottom products despite variations in the feed rate, composition
and enthalpy. These latter are the load variables. The controlled variables are the
distillate and the bottom compositions. To achieve their control, there is a choice
of the following possible manipulated variables: distillate product rate, reflux rate,
reboiler heat input, bottom product rate, etc.

The design of a control structure, i.e., the selection and pairing of controlled and
manipulated variables requires a mathematical model of the process. For control
system design purposes, the most practical model is the input-output model of the

form: c=f(m, d)

Control system and hardware

A measuring device is clearly needed in a control system in order to measure the
controlled variable in a feedback control system (or, in a feedforward system, to
measure the main load variable, or for inferential measurements in inferential
control systems).

A transducer is used to convert measured physical quantities, such as tem-
peratures, flow rates, levels or compositions, into signals which can easily be
transmitted from the process to the controller, which may be installed some
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hundreds of meters away. Easily transmitted signals may be electric current or
voltage signals, or pneumatic signals (i.e. the pressure of compressed air or liquid).
Measuring devices built together with transducers are called transmitters.

Transmission lines carry electric or pneumatic analogue signals from the process
to the controller (and back). Sometimes amplifiers have to be installed into trans-
mission lines. Sometimes it is more advantageous to transform analogue signals
into digital ones and transmit several signals in series through a single transmission
conduit. Pneumatic transmission lines, if long, may cause a considerable time
delay.

The controller is the heart of the control process. It receives the control signal
from the measuring device, compares it with its derived value, the set point, and
according to the value and velocity of the error, gives a command signal to the
process, telling it what manipulation is to be undertaken. The controller can be
regarded as an analogue electric or pneumatic computer, on which simple control
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Fig. 5.5. Flow and level control loops and block diagram
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laws can be implemented. Digital computers may also be used as controllers; they
have the advantage that they can be programmed for more sophisticated control
laws, and are capable of controlling more processes simultaneously. Digital con-
trollers need an input and an output interface between the transmission line and
the analogue instrumentation of the process.

The final control element is the device accomplishing the command given by the
controller. In the chemical industry, the manipulated variable is most frequently a
flow rate, which is manipulated by a control valve. The actuator of the control
valve receives the command from the controller and moves the valve into the
required position. Most valve actuators are pneumatic, since they are cheap and
have a simple construction. Variable-speed pumps and compressors are also used
as final control elements, as well as relay switches for on-off control.

A flow control and a level control system and the block diagram of a feedback
control system are shown in Fig. 5.5. :

5.2 Control dynamics

Feedback control is the basic regulating mechanism in control technology.
However, negative feedback loops are capable of continuous oscillation and even
instability — on the other hand, they may be sluggish and fail to control the
controlled variable. It is thus of primary importance to understand the mechanism
of feedback, and to examine its dynamics.

5.2.1 Basic concepts of feedback control

Negative feedback

Feedback may be negative or positive.

Positive feedback means that the controller works in the same direction as the
disturbance. For example, in a heat exchanger where the output temperature is
controlled (Fig. 5.6), if the temperature is changing due to some disturbance, the

TT temperature transmitter
* TC temperature controller

temp ( temp;

tempget

heating medium
Fig. 5.6. Control of a heat exchanger
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positive feedback controller will manipulate the flow of the heating medium so as
to increase the temperature when it is above the set point and decrease when it is
below. This feature is not conducive to regulation and causes instability.

Negative feedback works in the opposite sense. When the temperature, the
controlled variable, is above the set point, i.e. it is higher than the desired value,
the controller will reduce the heat input by manipulating some variable (called the
manipulated variable). Of course if the temperature is below the set point it will
increase the heat input. In short, negative feedback works always in the sense
opposite to the measured deviation.

The block diagram

Figure 5.7 shows the block diagram and the simplified block diagram of a
negative feedback loop, which may, for instance, be the heat exchanger control in
Fig. 5.6. In the simplified block diagram the actuator, the control valve, the
controlled process and the transmitter are all lumped together into the block
labelled ‘process’. Any classical simple control loop can be divided in this manner
into ‘two parts, the process and the controller, on the basis of the fact that the
parameters of the controller are adjustable, but those of the process are not.

The mathematical treatment of networks similar to that represented in Fig. 5.7,
and even of more complicated ones, is convenient if the signal transfer of all
elements in the network can be represented by a simple linear input-output rela-
tionship of the form

dy=G(w)dx G

where y is the system output signal,
x is the system input signal,
G(w) is a function characterizing the signal transfer of the system. This is
generally a function of the frequency of the input signal.

load
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control heat g|  temp
actuator et “UUe [ exchanger |¢ ] transmitter
m
manipulated
variable
controller
load process .
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Fig. 5.7. Simplifying the block diagram
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Fig. 5.8. Elements in series

In a linear network all linear transformations are valid. Thus the resulting
frequency function of elements in series (Fig. 5.8) is the following:

dx, = G;(w)dx, = G;(0) G, (w)dx, = G;(0) G, (w) G, (w)dx
G(@)=]16G\(®) (52)
The resulting frequency function of elements in parallel (Fig. 5.9) is:
dx, =G, (w)dx, + G,(®)dx, =[G, (0) + G,(w)]dx,
G(w)=2.G\() (5.3)
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Fig. 5.9. Elements in parallel

The frequency function of a simple negative feedback control loop is derived as
follows (Fig. 5.10):

dxs=G(w)dx, + Gs(w)dx, =
= Gy (0)dxy, + Gs(0) G () dxs, 4o — G5 (0) G (w)dxs
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Fig. 5.10. Negative feedback control loop
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Since the simple linear relationship in Eq.(5.1) greatly facilitates the treatment
of control networks, one attempts to use linear relationships even for nonlinear
systems, whenever possible. The technique of linearizing nonlinear input-output
models will be presented in Section 5.3.3. It should be mentioned that most
chemical engineering systems are nonlinear; some of them are suitable for linear-
ization. Exceptions are, for instance, chemical reactors, where linearization may
produce erroneous results.

" The frequency function

The frequency response of a system is obtained experimentally by forcing the -
system, using a sinusoidal input (see Fig. 5.11):

x=asin wt (5.5)

where a is the amplitude of the sine wave (-), and
o is the frequency of the sine wave (radians/s).
After a certain time, depending on the characteristics of the forced system, the
transients die out and the remaining steady-state output is a sine wave having the
same frequency w as the input: :

y=>bsin (wt+ @) (5.6)

but with a different amplitude b, and shifted by phase angle ¢ with respect to the
input wave. The amplitude ratio and the phase angle are the components of G(w),
the frequency function vector:

the magnitude: |G(w)|= %(co) 6.7

the phase angle: X G(w)=¢p(w) (5.8)

both depending on the frequency of the forcing function (Fig. 5.11). '
The frequency function vector can be represented graphically on a polar plot.
G(w) is conveniently expressed mathematically as a complex number, represented -

» 4
At = Ty = = T,
s0° P27 P
To at
‘H Bt Tp
X a y /b
) A\
= f e ¢
0 & system 0 P
input steady ~-state output

Fig. 5.11. Determination of the frequency response function
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Fig. 5.12. Representation of the ftequehcy function vector in the complex plane

in the complex plane (Fig. 5.12):
Giw) =| G(iw) | %0 =
=G (i) [ cos ¢ (iw)+i sin @ (iw)] = (5.9)
=Regp) + i Img )

This equation clearly shows that when frequency functions are in series (as in
Fig. 5.8), then amplitude values multiply and phase shifts add. For parallel
frequency functions (Fig. 5.9), addition of the frequency functions is accomplished
algebraically using the canonical form of the complex numbers (and graphically on
a polar plot).

The most frequently used graphical representations of frequency functions over
a broad frequency range are the Nyquist plot and the Bode plot. The Nyquist plot
is a polar plot in which the end points of the individual vectors G(w) are connected
with a continuous line beginning at =0 and ending at w= oo (Fig. 5.13). It has
the drawback that frequencies w are not indicated. The Bode plot consists of two
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<

Fig. 5.13. Nyquist diagram
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diagrams, one of which shows the logarithm of the amplitude ratio, and the other
the phase lag (linear) both as a function of the logarithm of the frequency of the
driving sine wave (Fig. 5.14). The logarithmic scale of the amplitude diagram and
the linear scale of the phase diagram are chosen to allow the multiplication of
frequency functions in series by simple addition of distances in the diagram.

Oscillation in a feedback loop

Oscillation and resonance are characteristic of negative feedback loops. Reso-
nance may be detrimental. A common example is the breakdown of a bridge caused
by the rhythmical marching of a troop of soldiers.

The mechanism of oscillation is similar to a ball’s bouncing. If a ball is being
repeatedly struck (i) with the same force, (i) at its highest position, it will continue
to bounce to the same height (amplitude) at constant period. Should the force
diminish, the amplitude will diminish, too. Should the ball be struck before its
highest position, the period will be shortened.

In a feedback control loop a signal entering the loop circulates, as shown in Fig.
5.15. Oscillation is maintained if a signal which entered the loop returns with the
same amplitude, shifted by a 360° phase angle. (The difference from ball bouncing’
is that the signal is generally continuous, instead of a series of pulses.)

There is an inherent — 180° phase shift in every negative feedback loop. Since the
controller must always act in the opposite sense to the measured deviation, there
must be a sign reversal somewhere in the loop. In Fig. 5.15 the sign reversal is
represented by the comparator. The sign reversal is equivalent to a — 180° phase
shift. Thus, if the phase shifts exhibited by the process and the controller sum up
to —180°, there is a phase shift of —360° in the loop-condition () for uniform
oscillations. The frequency of the sinusoidal wave, for which

£ Gy (i) + ¥ G (i) = —180° (5.10)

is the critical frequency of the loop.
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Fig. 5.15. Sign reversal in the negative feedback loop

Uniform oscillations are maintained in the control loop if the force exerted by
the controller is the same after every cycle, that is, if the product of the amplitude
ratios at the critical frequency is unity:

l GC (iwcr) l GS (iwcr) | =1 (5’1 1)

Equations (5.10) and (5.11) can be combined into one equation, giving the
representation of the vector in the complex plane:

GC (iwcr) GS (imcr) =-1 (5 12)

This equation is a simple formulation of the Nyquist stability criterion. More
exactly: for a stable loop, following the Nyquist curve of the open loop frequency
function (G¢(iw) Gs(iw)) from o =0 in the direction w— o0, point (—1) must lie
at the left. If point (— 1) is at the right, the loop is unstable. If the Nyquist curve
traverses point (— 1), the loop is at the stability limit, exhibiting uniform oscilla-
tions at the critical frequency (see Fig. 5.16).

Re + } == Re +

stability limit stable
Fig. 5.16. The Nyquist stability criterion
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Fig. 5.17. Quarter-amplitude tuning

It is important to note that the Nyquist stability criterion uses the open loop
frequency function to predict closed loop stability! Of course, it applies only to
negative feedback loops.

How does a sine wave with the critical frequency enter the closed loop? Any
pulse, impulse, or step signal may be decomposed into a sum of sine waves with
different amplitudes, phases and frequencies. The sine components which have a
frequency different from the critical frequency of the loop die out (because for these
frequencies the loop gain is less than unity, or because for these frequencies the
loop phase shift is different from —360°), and the loop will cycle with the critical
frequency after a transient period. The forcing signal may enter the closed loop at
any place, e.g. at the set point.

Damping

Damping of the oscillation (which has the critical frequency) is obtained by
proper tuning of the controller. The controller is adjustable, whereas the parame-
ters of the process are fixed.

Experience has shown that a gain product equal to 0.5 or less is generally
advantageous. Then the amplitude of oscillation is attenuated by one-half each half
cycle, and by one-quarter each full cycle. In Fig. 5.17 A/B is 0.5, and A/C, the
so-called decay ratio, is 0.25. This is the so-called ‘quarter-amplitude damping’,
often used in industry as a rule of thumb for controller tuning,

With quarter-amplitude damping, any disturbance is virtually eliminated within
three full cycles.

S5.2.2 Control of a dead time process

Pure dead time processes are those that are most difficult to control. The reason
for beginning with this process is to provide the reader with a grasp of the control
problem.
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Definition and characteristics of dead time
Definition

A dead time process has the special property that its response to any kind of
disturbance is delayed by an interval called the dead time (Fig. 5.18). During this
interval no information about the occurrence of a disturbance is available. This is
the cause of the difficulties encountered in the control of processes dominated by
dead time. The output of a dead time process may be described by the following
equation:

ylt]=Asx[t—Tp) (5.13)

that is, the output, y at time instant ¢ is proportional to the input at time instant
[t— Tp]. Proportionality factor A is the so-called steady-state gain of the pro-
cess, its dimension is defined by those of y and x and by Eq.(5.13).

Dead time in the chemical industries is generally linked with transportation. As
an example, consider a liquid product which is to be diluted with water to obtain

Input 8
X

w=- Time

It I
fL Q.

Output &

2= Time
Fig. 5.18. Response of a dead time process

a 50% aqueous solution. Dilution water is fed directly into the product pipeline;
concentration is measured by a density transmitter built downstream in the
pipeline at a place where product and water are already thoroughly mixed (Fig.
5.19). If backmixing in the pipeline is negligible, this is a pure dead time process,
the dead time being equal to the transportation lag

Ip= —];- (5.14)
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Fig. 5.19. Mixing in a pipeline is a dead-time process

The same phenomenon arises in tubular reactors, blending processes, and also
in heat transfer processes; in fact, everywhere where molecules have to move
through a distance in order to exert an effect. A typical dead time process is a
conveyor belt transporting granulated solids. Sample pipelines to process analysers
are also sources of dead time. "

Frequency function: gain and phase shift

The frequency response of the dead time process is easily computed from its
equation, as follows (refer to Fig. 5.11). The input to the process is a sine wave:

X=qsin wt (5.15)

where a is amplitude, o is frequency, ¢ is time. The steady—statc output is also a sine
wave. Its equation is obtained by substituting Eq.(5.15) into Eq.(5.13):
y=adssin[w(t— Tp)]=adg sin (wt—oTp) . (5.16)

The output amplitude is b=ads.
The output lags behind the input by the phase angle:

o= %G(iv)=—oT,. (5.17)

The gain or magnitude of vector G(iw) is the ratio of the amplitudes of the
output and input sine waves:

|G i) | = % = s _ 4 (5.18)

Thus, for a dead time process, ¥ G(iw) depends on the frequency of the input,
while |G(iw)| does not. ,

We define the gain of the process as a product of the steady state and the
dynamic gains:

|G (iw)| = 45| g (iw)| (5.19)
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This is the definition of the dynamic gain, which will be found useful later. For the
dead time process, .
|G(iw)| _ A

=]
As As

lg(iw)| =
We define the normalized frequency function vector of a process as

g(iw)= (5.20)

G(iw)
A
Of course, ¥g(iw)= ¥ G(iw) for all processes. A is a scalar quantity.
The normalized frequency function vector of a dead time process is shown in Fig.
5.20in the form of Nyquist and Bode plots, using coordinates that are independent
of the parameters of the individual system.

Proportional control of dead time

A proportional controller (or P-controller) is a simple device with an output that
is proportional to the error at every time instant -

m=Ace (5.21)

where e is the error, m is the manipulation and Ac is the proportional gain of
the controller.

The P-controller has no phase lag and its gain is constant for all input frequen-
cies. Thus, for the proportional controller

|Ge(iw)|=Ac
Igc(im)|=1
X gc(iw)=0°.
10
16} ~ Im

10 s ‘

g:o o _ 01 10 1 700
-Yod \\
-180°
as \
-270¢° \
-360° * Viim
SO0 10 10 100

T
Fig. 5.20. Nyquist and Bode plots of dead time processes
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Figure 5.21 illustrates a simplified block diagram of a dead time process con-
trolled by a P-controller. The phase lags are as follows:

process ps=—wlp

(radians if w E?s—(—i— , degrees if w g:_g_)

controller @c=0

process
‘ps:‘ -G TD

y =control signal
y=Agx l f-TDI

I’ﬁ:Ac e

P-controller
@=0
Fig. 5.21. Proportional control of dead time

Critical frequency

For a sine wave having the critical frequency, the phase lags of the process and
the controller sum to —180°, which causes the sine wave to return to its starting
point with —360°, i.e. zero phase shift:

¢S+¢C=_’a_)chD+0= '—1800 (5.22)
o, Ty=— 1 1800 (5.23)
P,cr :

From Eq.(5.23) a simple and exact expression for the critical period is obtained.
Nothing has been neglected in its derivation.

— Tp=2T) (5.24)

Damping

To determine the conditions under which continuous cycling occurs (i.e. the
control loop is at its stability limit), the Nyquist criterion is used, cf. Eqs (5.10)
—(5.12). Thus, the stability limit is attained if the gain of the proportional control-
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ler is set so that it satisfies the following equation:
i GC (lwcr)l I GS (lmcr)l =ACAS =1 (5’25)

This means that, if a signal composed of sinusoidal waves of a broad frequency
spectrum (e.g. a pulse signal) enters the control loop in Fig. 5.2/ at any point, i.e.
either as a disturbance, or as a set point change, then after a time necessary for the
sine waves with other frequencies to die out, all signals in the loop, i.e. ¢, e and m
will cycle with constant amplitude and a period equal to 2T5,.

If the gain of the proportional controller is set so that

AcAs>1

then the amplitudes of the successive cycles (with period 27p,) will be expand-
ing, and the system is unstable.

As a rule of thumb, controllers are tuned for quarter-amplitude damping in
order to obtain stable control which restores the steady-state within three full
cycles (Fig. 5.17).

For this damping a P-controller controlling a dead time process is tuned to
produce a gain product equal to 0.5:

ACAS =O.5 .

With this tuning, the period of the signals in the control loop is essentially the
critical one, Tp . =2Tp (it is, in fact, slightly longer), and the steady state is
attained after a time of 37% ., =6Tp.

Open-loop frequency function

To check the stability of the closed control loop by the Nyquist criterion, it is
advisable to draw the Nyquist plot of the open-loop frequency function. In many
cases it is sufficient to use the Bode plot, which is easier to construct.

For a dead-time process controlled by a P-controller: ) The Nyquist plot of the
dead-time process is a circle with its centre at 0 and a radius of 4s. b) The
frequency function of the P-controller is a scalar quantity:

Ge(iw)=Ac
Thus, the Nyquist plot of the open loop frequency function
G (iw) Gy (iw) is also a circle,
with its centre at 0 and a radius of 4gA4c.
The Nyquist and the Bode plots for an open loop composed of dead time and
a P-controller are shown in Fig. 5.22. For AcAs<1, following the Nyquist plot

in the direction of increasing frequencies, the point — 1 is seen at the left, indicating
that the loop is stable.
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Fig. 5.22. Open loop frequency function for P-control of dead time process

Steady-state offset

A control system is expected to keep the controlled variable at its set point, i.e.
the error signal is kept at a value of zero (cf. Fig. 5.21 ). A load disturbance or a
set point change will cause a transient error, but the controller is expected to
eliminate it by appropriate manipulation: in the case of a load disturbance, it must
return the control signal to its previous steady-state value; in the case of a set point
change it must transduce the control signal to its new command value.

The P-controller has the deficiency of being unable to accomplish the above task:
it generally works with a steady-state offset. This follows from its control law
represented by Eq.(5.21):

m=Ace (5.26)
where /7 means the deviation of the manipulated variable from a pre-set value
my for zero error and normal operative conditions: Ceer,0 and d;. In order to
balance a deviation from c,,, , or d, a value m different from my is needed, but
this is produced only if e#0 in the steady state.

The steady-state offset can be calculated from the steady-state gains in the loop.
This calculation is valid only for stable systems. (Refer to the notation of Fig. 5.20.)
The steady-state output of the process is

y=C¢=Asx= A+ Asd (5.27)
where é=c—cy=c—c
m=m—my,
d=d—d,

set, 0
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Combine Eq.(5.26) and e = ¢, —¢ with Eq.(5.27):

¢=Ag Ac(bo— )+ Asd (5.28)
Rearrange to give :
4 Asdc 4 As 7
= d 5.29
= Traa, = T Agdc (5.29)

Example 5.2.1

A P-controller controlling a dead time process with Ag=0.3 is set for quarter
amplitude damping, i.e. AsAc=0.5. What is the steady-state change of the con-
trolled variable after a unity change

(@) in the set point, =1

(b) in the load variable, d=1?

(@) For quarter amplitude damping

AsAc _ 05 .05
1+A4s4c. 1405 1.

©®)

Without control, a unit change in d would cause a change in c, the controlled
variable of i
Asd=0.3-1=0.3

Thus, proportional control leaves 9()'% = TI)ITJQ =0.66, i.e., 66% of the
offset without control!
To eliminate steady-state error, AgAc= o0 would be needed, but this is pro-

hibited by the stability requirement.

Integral control of dead time

Integral controller, definition

The P-controller is unable to eliminate offset, so another control mode is needed.
The (integral) I-controller is a device producing a steady state only in the case of
zero offset:

dm

1
Rkl 5.3
dt Ie (5.30)
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(thus, %’? =0 if e=0), or, integrating Eq.(5.30):

t

= %jedl (5.31)

0

Here 7 is the tuning parameter of the I-controller. The output of the I-controller
is proportional to the error integral. The response to a step input is shown in Fig.
5.23. It is shown that I is the time necessary for the output to repeat the input: it
is named integral or reset or repeat time.

Thus, the integral control mode eliminates offset in the steady state. There is,
however, certainly a penalty for that.

Error, e (%)

10

0 2= Time

sof

707
60+

My 50

- Time
Fig. 5.23. Integral time of the I-controller

I-controller, frequency function

The gain and phase angle of the I-controller will be calculated before examining
its effect on control loop behaviour. The frequency function is easily calculated
using Eq.(5.31) (refer to Fig. 5.11). The input to the controller is the sine wave:

e=asin wt (5.32)
Substitute this into Eq.(5.31)

= —Hasin wtdt= %(—cos w?) (5.33)

Since
—cos ¢ = —sin (90° — @) =sin (¢ —90°) (5.34)
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Im+
|
. _Re+
- Qw=00 o
AG
T T T ™ W
001 01 10 10 100 w-=0
Fig. 5.24. Nyquist and Bode plot of the I-element
we obtain
a .
W= — sin (wt—90° 5.35
= sin (01 —90°) (5.35)
whence the magnitude of the frequency function vector, or gain, is
. , a 1
|G(iw)|=g(w)|=|— |/ (@= - (5.36)
Iw o

It is inversely proportional to the frequency of the input: when w—0, |G| —00;
when w— o0, |G| —0.
The phase angle of the frequency function vector is clearly

X G(iw) = £ g(iw) = —90° (5.37)

independent of the frequency of the input. Thus, all the frequency function vectors
of the I-controller lie along the negative imaginary axis of the complex plane. The
Nyquist and the Bode plots of the frequency function are shown in Fig. 5.24.
Recall that for the dead time process it is the magnitude of the frequency
function which'is independent; the phase lag is proportional to frequency. '

The control loop with dead time process and I-controller

The simplified block diagram of the control loop is shown in Fig. 5 .25.
In order to determine the critical frequency of the loop, the phase shifts are
needed. Process [Eq.(5.17) with w in degree/s]:

X Gs (lw) = — COTD

Icontroller [Eq.(5.37)]:
X Gc(iw)=—90°
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process

Ys=-w Tp

d X y=control signal
y=Agx [t—Tp]

I—- controller ¢

m q)c =__90°

a1 e -+ Cset
m=— fed(

Fig. 5.25. I-control of a dead time process

Apply the Nyquist criterion (Eq.5.10)

—180° = ¥ G (iw) + ¥ G (iw) = — w,, Tp —90° (5.38)
Whence:
90° degree 7 radian

= = 5.39
Ty, s 2Ty s (5.39)

The critical period:
360°

cr

The penalty for eliminating offset is found in Eq.(5.40): the critical period of the
control loop with an I-controller is double that found with a P-controller, and so
is the time of a transient. This result is quite general for any process and control
loop: an I-controller slows control down. !

Damping in the control loop with an I-controller is obtained by the proper
setting of the sole tuning parameter 1.

At the stability limit [cf. Eqs (5.11), (5.18) and (5.36)]

1 2T, 4

T = =4T} (5.40)

=Gy (i) | |Geliona)] = s - — = =2 (5:41)

whence ) . ‘
’ Icr:: —n— TDAS (5.42)

If quarter-amplitude damping is desired, then
0.5=] GS (iwcr) [ GC (lwcr)l
and
4

Ios= — Tnds (5.43)

In order to damp oscillations, the reset time has to be augmented. The minimum
value of 7 is the critical one given by Eq.(5.42).

The choice of the reset time does not influence the critical frequency, which
depends only on the dead time of the process. ’
- The open loop frequency function for the integral control of dead time is plotted
in the Bode diagram (Fig. 5.26) using the following equations:
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Im+

-1 Re+
e

Fig. 5.26. Open loop Nyquist and Bode plots for I-control of a dead time process

1
in: G| =
gain |Gs| 1Gcl=4s T

phase shift: ¥ Gs+ ¥Go=—Tpw x57.3°—90°
o in radians/s

Both gain and phase shift are monotonic functions of frequency, so stability can
also be checked from the Bode plot. The Nyquist plot is constructed using the gain
and phase values from the Bode plot. The point — 1 is seen at the left, and thus the
control loop is stable.

5.2.3 Control of capacity processes

By contrast with dead-time processes, capacity processes are easy to control.
The input-output mathematical model of a pure capacity process is similar to

that of the I-controller:
y=A;[xdt (5.44)

where x is input, y is output, both being deviations from the steady-state values,

[y

A is gain, its dimension being m——
x] x time

Pure capacity is thus an integrating element, as is the I-controller, for which
A= —}- [cf. Eq.(5.31)].
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The frequency function of the pure capacity is similar to that of the I-controller,
which has been derived in the previous section. With reference to Eq.(5.36), the
magnitude of the frequency function vector is

(Gytio| = 2 (5.45)

The phase shift is independent of the frequency of the input sine wave [cf.
Eq.(5.37)k: ¥ Gy (iw) = —90° (5.46)

An example of a pure capacity process is a liquid tank (Fig. 5.27). The output
of the process is essentially the quantity (mass or volume) of the liquid stored in
the tank; it is measured by the liquid level. A metering pump delivers outflow (and
thus outflow is independent of the liquid level). To control the level, the only
possible manipulative variable is the inflow.

The mathematical model of the tank is obtained by writing down its total mass
balance:

A g&{;{ = I/Vin - I/I/:)ut (547)
whence the change in level is:
t
A= [ =W at (5.48)

0
Equation (5.48) is identical to Eq.(5.44), where y=H, 4;= %, x=(Wp— Wyn).

Thus this tank is an integrating element, the frequency function of which is shown
in Fig. 5.24, with a step response similar to that shown in Fig. 5.23.

The step response of the integrating process indicates that any small change in -
the flows, which implies a non-steady-state:

Wia— Wou #0 (5.49)

.'
%W//// Him)

Fig. 5.27. Pure capacity element: liquid tank with fixed outflow
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will cause the tank to flood or empty. This attribute is known as non-self-regulation
and that is why an integrating process cannot be left for a long time without
control. NOTE: Liquid tanks for which the outflow depends on liquid level, or gas
tanks for which both the inflow and the outflow may depend on the pressure
difference across a restriction (pipeline or valve) are capacities, too, but they are
self-regulating capacities. Such processes will be treated in Section 5.3.

Control of a pure capacity by P-controller

The scheme of the control loop is shown in Fig. 5.28.
When applying the Nyquist stability criterion to this control loop, it can be seen
that o
¢s+oc=—90
for all frequencies. The loop phase lag never reaches 180°, thus there will be no
oscillation. Therefore, the proportional band can be set without any theoretical
limit. :

pr(:ciesso
g d y=A,; [xdt Lc
m P—cont_roller
M= Age - ta Cset

Fig. 5.28. I-element controlled by P-controller

In consequence, pure capacity processes can be controlled by a simple P-
controller set to a high A, proportional gain (narrow proportional band), with
no oscillation or steady-state offset.

An I-controller cannot be used to control an I-process because both the I-
controller and the pure capacity process exhibit a constant phase shift of —90° for
all frequencies (Fig. 5.29):

Ps=0c=—90°

process
@5 =90°

y= A’ xdt

m 1 _controller
@, =-90°

ﬁ:}-]edf = ()l

Fig. 5.29. I-element controlled by I-controller
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thus the loop phase shift sums to —180°

@s+pc=—180°

independently of the frequency and of controller tuning.

5.2.4 The Pl-controller

Due to the fact that the I-controller may produce unstable control if applied to
a process with a free I-element, it is almost always combined with a proportional
controller.

The ideal PI-controller consists of a P- and an I-controller in parallel ( Fig. 5.30).
This combines the best features of the P- and I-controllers: the proportional offset
is eliminated with little loss of response speed (compared to an I-controller) and
stable operation can be achieved with almost any process. This controller combina-
tion “is the one that is most frequently used. It is described by the following
equation:

t
y=Ap (x+ % jxdt) (5.50)
0

or
t

0

where y is output (for a controller, the manipulation),
x is input (for a controller, the error),
Ay is the static gain of the P-controller,
I'is the integral time of PI-controller,

Ay =—f-4;—’— is the static gain of the I-controller, and ¢ is time.

The step response of the PI-controller is obtained from Eq. (5.50) if the input is
constant:

x=0 for t=0

Fig. 5.30. Scheme of PI-controller
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x=a for t>0

y=4p <a+ 9}) . (5.52)

For t=1, y=Ap(2a) (see Fig. 5.31).

8
e ia/rm
T
‘ ApO .
_a ] = P
y=m Apa
— |
ba—— [ ——

Fig. 5.31. Step response of a PI-controller

The integral, or reset, or repeat time of a PI-controller is the time neces-
sary for the I part to repeat the response of the P-part. (The repeat time of an
I-controller is the time needed to repeat the input; cf. Fig. 5.23.)

The frequency function of the PI-controller can be obtained as the vectorial sum
of those of the P- and the I-controllers [Eq. (5.3)]. This is best represented on a
polar diagram (Fig. 5.32.).

From Fig. 5.32 it is evident that the magnitude of the vector Gy (iw) is:

|Gy (i) | = /1 Gp(iw) * +1 Gy(i)

e
4, 1+ (%)2 (5.53)

The phase shift

¥ Gpi(iw) = — @pi(iw) =arctan (:]%i(cloq’)—)_>

=arctan (—_——1—) (5.54)
Iw

Both the magnitudé and the phase shift of a PI-controller depend on frequency.
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Im+

8

Gp (iw):AP

Re+

6l iw) =

=_Ap
)

‘
|

Fig. 5.32. Frequency function of a PI-controller

For

00 |Gyl = % 00— @py— —90°

Io— 0| Gpy|— 4p —@p—0°

Thus for low frequencies (near the steady state) the controller behaves as an
I-controller, eliminating steady-state offset; and for high frequencies it behaves as
a P-controller with very small phase lag — thus if properly set it will only slightly
increase the phase lag of the control loop, the critical period and the settling time.

The phase lag of the PI-controller depends only on the parameter /. I should be
set so that the phase lag of the controller is smaller than 10° at the critical frequency
of the process.

Example 5.2.2

Consider a dead-time process with the parameters Ag=2, T, =2 min. The task
is to control it (a) with a P-controller; (b) with an I-controller; (c) with a
Pl-controller. The controller is to be tuned to quarter-amplitude damping.
Offset and settling time are to be estimated.

Solution
(@) Tune the P-controller to quarter-amplitude damping:

ACAS =AC * 2=0.5
AC = 0.25
Offset is calculated using Eq. (5.29):

=——— = —=(.333
Cor 14+4s4c 1.5
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¢ Ag 2
S=—fs -2 1333
d_ 1+Asdc 15

The settling time is 375 .. Use Eq. (5.24):
Tset=3TP,cr=3 -2 TD=3 +2+2 min=12 min

4

(b) With an I-controller there is no offset. To tune the controller for quarter-
amplitude damping, use Eq. (5.43):
1(0.5) = i TDAS = —" 2 * 2 min=5.l mln

T T

The value of I (for an I-controller) does not affect the phase shift (which is
always —90° for an I-controller). The critical period of the control loop is

Tp, .. =4Tp =8 min,

obtained from Eq. (5.40):
To=3Tp ., =24 min

(¢) With a PI-controller, there is no offset. The critical frequency, where the
dead-time process alone exhibits — 180° phase shift
0, ITp=n—>0, = = = _139_
Tp min

This is the frequency at which the PI-controller should produce a —10° phase

shift. Use Eq. (5.54):
— @py=arctan (i> = —10°,
Iw

I=3.61 min

The critical frequency of the control loop is where
-1
+ @c=—Tpw+arctan| — | =
Pst+@c p®+ ( Ia>>

rad
. s

By-trial and error, this is
W, =1.40 —
min

whence
Tp o= 2n =4,49 min,
and the settling time is 37Tp ., =13.5 min, which is slightly more than the
12-min value found for P-control. For quarter-amplitude damping A4, re-

’Gs||G01=0-5,

mains to be calculated.
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where [Eq. (5.53)]

2

1 2
=Ap\/l+(m> =Ap-1.019

0.5
Ap= 2-1.019

i. e. slightly smaller than 0.25, the value found for the P-controller.

whence

=0.245,

5.2.5 PD- and PID-controllers

Dead-time processes are well controlled with PI-controllers as shown in the
previous sections. In the case of multicapacity processes the critical period may be
very slow and it would be advantageous to speed up control. In such cases control
involves derivative action.

The input-output equation of the ideal derivative element is:

dx
y=D 7 (5.55)
where y is output, x is input, D is derivative time constant, and ¢ is time.

Of course, Eq. (5.55) cannot be realized because the derivative of the input at
time instant ¢ cannot be known; it can be estimated only from previous measure-
ments. So a real derivative element always contains a small time delay.

Moreover, for an ideal step input which would occur in zero time and for which

E)E— = 0, the ideal derivative element should produce infinite output in zero time

delay, which is also impossible.
The frequency function of the D-element is obtained by solving Eq. (5.55) for
X=a sin ot:
y=Dw coswt=aDw sin (wt+ 90°)

whence | Gp(iw)| = Dw dependent on
¥ Gp(iw)= +90° independent from w

The frequency function of the D-element in the complex plane in a series of
vectors lying along the positive imaginary axis; its Nyquist and Bode plots are
shown in Fig. 5.33. ‘

The ideal D-element would thus reduce the loop lag by 90°; a real D-element can
produce a phase shift of -+ 60°.
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Time

T

e = S TV = lg w
Step response Bode plot Nyquist plot
- Fig. 5.33. Plots of a D-element

The derivative element cannot be applied in a controller as the only control
mode, since it responds only to a change in its input, and a constant input has no-
effect at all on its output.

The D-element is therefore used only in combination with a P-controller (PD-
controller) or with a PI-controller (PID-controller). Since the PD-controller does
not contain the I operating mode, it cannot eliminate steady-state offset completely
and is used only for special applications.

The PID-controller is the most general controller. The ideal PID- controller
consists of a P, an I and a D element in parallel (Fig. 5.34), its input-output
equation is:

t t

dx 1 dx
0 0

where y=m—my, is the output or change in the manipulated variable,
my is the output of the controller in the steady state, when the error, its
integral and its derivative are zero,
x=e is the input of the controller: the error signal, 4p, I, D are tumng
parameters of the controller, and
t is time.
The Nyquist plot of the PID-controller is obtained by adding the Nyquist plots

= 0

Fig. 5.34. Scheme of a PID-controller
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* ideal
Im+ @ - 00

A
P Re +

B g w

Fig. 5.35. Bode and Nyquist plots of a PID-controller

of the P, I and D elements (polar plot). Both the Nyquist and the Bode diagrams
are shown in Fig. 5.35. It can be seen that '

ii) for low frequencies, w < %—, the PID-controller behaves like an I-controller,

and may cause instability in a control loop by increasing both phase lag and
dynamic gain;

(i) for high frequencies w > % the PID-controller behaves like a D-element and

may cause instability in a control loop by increasing its dynamic gain (although it
decreases phase lag);

(iii) thus parameters I and D should be tuned so that —}— <@, < —]15, where o,
is the critical frequency of the process along (or with a P-controller).

Conclusion. Negative feedback control loops are stable if their frequency function
satisfies the Nyquist criterion:

P Gs(iwcr) + X GC(iwcr) = —180°
‘ Gs(iwcr)| l GC(iwcr)[ < 1

Since the parameters are given and, with them, the frequency function of the
process, Gs(iw) is known, it is the controller that must be tuned in considera-
tion of the characteristics of the process.

The proper control of a dead time process requires a PI-controller; the minimum
settling time is 67p.

A single-capacity process can be controlled well with a simple P-controller set
to a narrow proportional band. A pure I-controller would cause instability and
thus must not be applied.
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5.2.6 Tuning the controller. Cycling method

The critical period of an existing control loop and the critical gain of the
P-controller can be determined experimentally — this is the method used in
practice to tune control loops. Once the critical period Tp ., and the critical
gain Ac ., of the P-controller are known (both determined with the P-control
mode only, any I and D control modes being eliminated), optimum controller
settings for any control mode (i. e. for P only, for PI, for PD, or for PID) can be
selected from tables.

The experiment is performed as follows:

1. Compile and close the control loop. Set the setpoint (command signal) of the
controller.

2. Eliminate I and D control modes, possibly by setting / to its maximum and
D to its minimum possible value.

3. Set Ac to its minimum value. (Most analogue controllers are scaled as

e
C

4. Apply a small driving signal to one of the inputs of the control loop (this may
be one of the load inputs as well; but it is most conveniently applied to the set
point). Be sure to apply a driving signal containing a broad frequency spectrum (it
must also contain the unknown critical frequency, e. g. a pulse or a stop).

5. Observe the output of the control loop (in most cases the controlled variable
is the output, but the manipulated variable may also be used). If no oscillation
occurs, increase the controller gain 4 and repeat step 4 until uniform oscilla-
tion results. If the amplitude of the oscillation increases, the controller gain A
must be decreased.

6. The controller gain A causing constant amplitude oscillation of the con-
trol loop output signal is the critical one: A ., and the period of one oscilla-
tion is the critical period I ;.

7. Use Table 5.1 to calculate the optimum controller settings. Here K, is the
critical and K the recommended loop gain. By definition

K= ACAS

and, since the process gain Ay is constant,
K A

Kcr - AC,cr

Table 5.2 gives the recommended controller settings given by Ziegler and Ni-
chols, which are applicable to processes consisting of dead time and single capacity.
It gives stable operation and quarter amplitude damping for most control loops.
Controller tuning will be treated more thoroughly in Section 5.3.8.

The method just described can also be used for simulated control loops which
may be tested using the TACS program.
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Table 5.1. Optimum controller settings

Process parameters by cycling method: Ac o, Tp,cr
Zeigler—Nichols settings

Controller Ac 1 D
P 0.5 Ace
PI 045 Ac,o; Tp /1.2
PID 0.6 Ac e Tp, /2 Tp, /8
Table 5.2. Process parameters from process reaction curve: 4g, Tp, T
Controller Ziegler—Nichols Cohen—Coon
T T 1
P Asdc=K== | K=zt
T T 1
PI k-0.9—D— K—O.9(~T—,—D—+ “)
I= Iy 1 _ 3.33(Tp/T) (1+11(Tp/T))
0.3 T 142.2(Ty/T)
PID ) K=1.2(T/Tp) K=1.35(T|Tp)+0.27
I=oT 1 _ 2.5(Tp/T) (1+5(T/T))
—oe T 14+0.6(Tp/T)
D 0.37(Ty/T)
D=05Tp T 14+02(Tp/T)

5.3 Linear control theory

Before tackling more complex control problems it is necessary to survey the
mathematical methods of linear control theory. The fundamentals of classical
linear control theory are very important in practice, notwithstanding the fact that
most chemical engineering systems are nonlinear. The mathematical models of
most nonlinear systems may, however, be linearized around their operating points,
in order to use the powerful linear techniques.
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5.3.1 Classification of processes

There are several ways of classifying processes and their dynamics.
1. Mathematical model

(a) Linear: if all equations and all function in the equations are linear.

(b) Nonlinear: if the statement above is not true. In this case the principle of
superposition does not apply. That is, the response of the
system to several independent inputs cannot be determined
independently and then added.

2. Independent variables

(a) Lumped-parameter system: described by an ordinary differential equa-
tion; the dependent variable is a function of time only; for example, a
perfectly mixed tank reactor.

(b) Distributed-parameter system: described by a partial differential equation;
the dependent variable is a function of time and of spatial variables; an
example is the tubular reactor.

" 3. Order:
An nth order linear, lumped-parameter, single input single output process can be
described by an nth order linear, ordinary differential equation of the form:

dry drly dy
ana;n— +a,,_1:i—t—n—_—l—+...+a,—a7+a0a=
d™x d™'x dx
=b,—— +by_ | ——— +... b, — +b .
am 1 dtm"'l + + 0, az +0Dyx (5 57)

where x is input,
y is output,
t is time, and
a, b are constants.

In real systems n is greater than m. Inequality m>n would mean that the
response for a step input must be infinite in zero time. This cannot be realized in
a finite system (cf. the D-element, Section 5.2.5).

Multiple input—multiple output systems are characterized by a system of dif-
ferential equations.

In control technology it is convenient to write Eq.(5.57) in the following form:

n n—1
dy-;-T““l————d y+...+TI§!-+y=

Ty ol
dr® bt dt

, d=x dm'x dx ’
=A |t —= +127] +...+ ——+x] 5.58
s[ a L gm T (5.58)

ds
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a; b;
where T;= 1/?; 7= /b are time constants, and
0
As=

_ by _ y(t=00) .
ao (t"' 00)

Very important special cases are:

is steady-state gain.

the first-order element:
dy

T— T +y=A4gx (5.59)
the second-order element:
d? dy
T2 d{ + Ty +y=dsx (5.60)

A dead-time element (defined in Section 5.2.2) can be approximated only in this
representation by nth order differential equation where n—co.

5.3.2 Typical input signals

Linear processes can be characterized by their responses to typical input signals
(besides being characterized by their differential equations).

Typical input signals are also applied for the experimental determination of the
dynamic behaviour of an unknown process (identification).

The typical input signals are the following:

(7) step: a change in the input signal value during zero time;

(i7) pulse: a step upwards and, after time A¢, the same step downwards;

(#ii) impulse: a pulse in time 4:—0;

(iv) ramp: a change in the input signal with constant speed; and

(v) a sinusoidal signal.

These deterministic signals are shown and defined in Fig. 5.36.

The sinusoidal input signal is used to obtain the frequency response that has
already been treated in Section 5.2.1 (see Fig. 5.11). The sinusoidal input is to be
repeated several times with the same frequency and amplitude, until a steady-state
response is obtained; the steady state is indicated by at least three constant am-
plitude and phase sinusoidal outputs while step, impulse and ramp inputs may be
applied only once or twice. Moreover, the experiment has to be carried out with
different frequencies over a broad frequency range to obtain a meaningful fre-
quency function, thus it is lengthy and expensive. However, in the presence of
noise, it is advantageous that a single frequency output is to be measured.

Identification of an unknown process can also be performed using stochastic
signals, such as white noise or plant noise.
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b
a:f?dt

X“ f=a for t 20 0t Time
. Pulse
a
a «
! Time
= Time a -At o
0 At—e-0; § =00
Step - Time
unit step:a=1 t
Triangular pulse Impulse
unit pulse: a=1 unit impulse: a=1
(Dirac delta
function &(t))
x
iz at
i
i
1
1
! . = time

0 t
Ramp

unit ramp:a=1
Fig. 5.36. Deterministic input signals

5.3.3 Linearization

Mathematical models of nonlinear processes are often linearized in the vicinity
of an operating point, so that they may be tackled by linear mathematical tech-
niques, e.g. the frequency function method.

Linearization of a nonlinear function is accomplished by expanding the non-
linear function in Taylor series and then truncating the series, leaving only the first
derivative(s). The nonlinear function has to be differentiable at the operating point.
Thus the nonlinear function is simply substituted by its tangent.

Consider a nonlinear function, f(x, z), of two variables. X and Z are the values
of the variables at the operating point, at the steady state. The Taylor series of this
function about point (X, Z) is:

S, 2)=f(X,2)+ <g£~)i’2(x—i)+ (%g)i,i(z—i)+
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(D) o4 (2L) - (D) o]

201\ox2 /., 0x0z 0z
1/0 _ 0 N
+.ooot ==&+ —(E—2)) f(X,2)+...+R, (5.61)
n! \0x 0z
whence the linearized f(x, z) function is:
f,2)~f(x,2)+ (ﬂ) X+ (@:) Z (5.62)
0x )z, 0z /5 ;
where £=x—x and Z=z—7%
Example 5.3.1
Consider a second-order reaction:
24—-P
for which the net reaction rate is:
de
p= —-&;p- =kck

The function r=r(c,) is desired in linearized form. Apply Eq.(5.62) to a
monovariate function:
reF+ (-—ai) éa=kei +2kenéy
dea /s,
-Example 5.3.2
The input of component 4 to a continuous reactor is 4= Wc,, where both

the volume rate W and its concentration c, are variables. Obtain the function
A=A(W, c,) in linearized form. Apply Eq.(5.62):

(oA . (04 e
A%A‘F <W>W‘EA W+ (E;A-)W"_:ACA= WCA+CAW+ WCA
f(x)“ -

I
I
1
I
!
1'
|
I
I
|
|

x"

X X
Fig. 5.37. Error of linearization
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Linearization according to Eq. (5.62) gives rise to an error, which depends on
the magnitude of the neglected elements of Eq. (5.61) which, in turn, depends
on the magnitude of £=x—x (and £, resp.). Thus the error is small and the
linearization by Eq. (5.62) is satisfactory if x is very close to X (and z to Z, resp.).
The error introduced by linearization is shown in Fig. 5.37 for a monovariate
function. .

It is evident that the linearized form of a nonlinear function varies with the
operating point.

5.3.4 The transfer function method

The transfer function method is very convenient for obtaining the output of a
process in response to any input, and for handling complicated networks. Transfer
functions are closely related to the frequency functions introduced in Section 5.2.1,
and are applied for the same purpose. The transfer function of a process is defined
by the following expression:

Y(s)

GO= % (5.63)

where G(s) is the transfer function,
Y(s) is the Laplace transform of the output signal,
X(s) is the Laplace transform of the input signal, and
s is a complex variable, the so-called Laplace transform variable.
Thus to use the transfer function method, Laplace transformation has to be
performed.

Laplace transformation
Transform operations are used to transform difficult problems into more tract-

able forms. Laplace transformation is a method of transforming linear differential
equations into algebraic equations.

Example 5.3.3
Transform the differential equation of the PID-controller:

t

m(t)=m(0)+ Ape(t) + 4, Je(t) dt+Ap

0

de(?)
dt

The Laplace transform is:

M(s)=ApE(s)+ 4, —E—Eﬂ + ApsE(s)
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if

t=0

J‘ edt=0 and (.d_e) =0
dt /o

The Laplace transform of a time domain function f(¢) is denoted by the symbol
F(s) and is defined as follows:

F(s)=L1f(0)]= Jf(t)e‘“dt (5.64)
0

where Z[f(t)]is the symbol that indicates Laplace transformation of the function
f(¢) in brackets,
s=a+iw is a complex variable, the Laplace variable.

Laplace transformation is applicable to linear functions for which the integral in

Eg. (5.64) is convergent. This is not a serious restriction.
- Laplace transformation is a linear operation, as it can be seen from Example
5.3.3 which has been solved using the basic theorems listed in Table 5.3. These
theorems are derived from the definition in Eq. (5.64), as well as the Laplace
transforms of some functions most frequently used in control technique, listed in
Table 5.4. .

To perform Laplace transformation of a time function or the inverse transfor-
mation of a Laplace transform into a time function it is not necessary to
resort to the definition given in Eq. (5.64); it is generally sufficient simply to
look up the function in Table 5.3 and/or 5.4. The technique is illustrated by some
examples.

Example 5.3.4. First-order lag. Transfer function
A first-order element is characterized by the first-order differential equation, Eq.
(5.59):

T% Fy(t)=Aex(2) (5.65)

where y(0)=0, and (%l) =0 (steady state) and
x(0)=0. t/o

Having defined the functions and initial conditions, we can proceed to the
transformation. Applying the linearity theorem, each term in Eq. (5.65) can be
transformed individually:

2| 1201 2100- LU0 (5.66)
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Table 5.3. Laplace transform theorems

321

1. Linearity theorem
ZIKf())=K L f(@)|=KF(s) (K= constant)
LLAOELO=F ()2 F ()

2. Real differentiation theorem
First derivative

2 [%f(z)] = SF(9) £ (0)

dn
| = =
[&570)

= “F(s)—s““‘f(())—s“‘z%f(O)—. L8

General nth derivative

dn—2 dn—l
0)—s
dtn-zf( ) dZn_l

SO

3. Real integration theorem

<z [Jf(t)dt:l o)

s
.?[jj..}f(z)dt"} =;1;f(s)

Ff(0)= lim sF(s)

s 00

4. Initial value theorem

5. Final value theorem
f(c0)= lim sF(s)
$—0

6. Time-shift theorem . N o
LU~ =e" LLID]=eF - F(s)

The transform of the first term is, using Theorems 1 and 2:

2| 12|~ 12| DO 1(5v(9)-y(0)
dt dt
=Ts5Y(s)
The transform of the second term is by definition
ZLlyl=Y(s)
The transform of the third term is by definition
LIx()]=X(s),  whence LAsx()]=AsX(s)
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The entire Laplace domain equation is

TsY(s)+ Y(s)=AX(5) (5.67)
which can be rearranged to obtain the transfer function defined by Eq. (5.63):
Y(s)
= 5.68
X(s) Glo)= Ts+1 (568)

The transfer function of a process can be used to obtain its response to any input:

Y(s)=G(s) X(s) (5.69)

Table 5.4. Laplace transform pairs

F(s) f@)
1 4(¢) (impulse)
% u(?) (step)
tn—l
= (m=L2,...) e
—%— e¥a(
sta
1 ___1___(1 £¥)
s(sta) +a
- cos at
s +a’
-2 sin at
si+at
s ch at
st—a
5 2 = sh at
§2—
1 | B
m — e~ sin bt
s+a -
m e~ cos bt
1 1 n—1 e—-at
(s+a) -1
ab 1 ( —at __ —b!)
s+a)(s+b) b—a
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To obtain the impulse response, the Laplace transform of the unit impulse is to
be substituted for X(s) in Eq. (5.69). From Table 5.4 it is found that
for f(£)=1-0(2) F(s)=1
Thus the Laplace transform of the impulse response of any process is
Y(s)=G(s) ‘ (5.70)

in other words, the transfer function of a process is obtained by the Laplace
transformation of its impulse response.

Example 5.3.5 First-oder lag. Impulse response
The Laplace transform of the impulse response of the first-oder lag is obtained
by substituting Eq. (5.68) into Eq. (5.69):

As

A T 4/ 1
- I _4 5.71
YO= 7047 1 T< 1) (.71

T StT

The time domain function of Eq.(5.68) is found in Table 5.4 as

()= i;—f-e'% (5.72)

The impulse response of a first-oder lag is shown in Fig. 5 38.

From Eq.(5.72):
Ag (dy A
YO ="\ ) =

As
=25.0.368
y(T) T

y(00)—0

Example 5.3.6. First-order lag. Step response
The Laplace transform of the step response of the first-order element can be
found in two ways:

1. by multiplying its transfer function by the Laplace transform of the unit step
input;

2. by substituting x(£)=1 - u(t), the expression for unit step input, into its differen-
tial equation given in Eq. (5.65).

The first method has been illustrated: to obtain the impulse response. Now use
the second way.
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Impulse:

x(t)=a.6(¢t)

y (r).—i‘%—‘le"/f

Step: yit) 10
x(t)za Asa 1.0
0.87
S y(t)zAga (1"0-'“‘) 0.6
0.4+
0.2
0 T T T 1
0 05 1.0 15 20
t/T
b X
a y(t)
Ramp: . Pl e
P Aga 34 Asa
x(t)=at .0
y(r):Asar(e-f/’+-fT-—1) Z
1_
0 T T T T T
0 1 2 3 5
t/T

Fig. 5.38. Response functions of a first-order lag

Equation (5.65) is to be transformed, with x(¢#)=1- u(¢), unit step input occur-
ring at t=0. :

The Laplace transforms of terms 1 and 2 were found in Example 5.3.4. Using
Table 5.4 .

ZLlAsu(t)] =45 e

The Laplace transform of Eq. (5.65) for x(t)=u(z) is obtained as:

Ts¥(s)+ Y(s)=As-§— (5.73)
from which Y(s) is expressed as:
Y(s)= .47.-3.___1.._. (5.74)
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This can be found in Table 5.4:

i3
y(0)=as(1-71) (575)
The values of the step response function are:

AT dy) _ 4s _ y(0)
3(0) = A(1—1)=0 (m)o“ CRpL

P(T)=As(1—e~)=Ag - 0.632
y(0)—A4s

The function described by Eq. (5.75) is shown in Fig. 5.36.

Inversion of Laplace transforms by expansion in partial fractions

The inverse transforms of functions not listed in Table 5.4 can be obtained by
several methods.
Inversion of a Laplace transform is denoted by

L F$)] =1 () (5.76)

The inverse transform can be obtained by contour integration in the complex
plane:

a+io

1
ft)y=— J e F(s)ds 5.77)
2ni
a—io

Other methods for inversion are the convolution method and expansion in
partial fractions. The partial fraction method is presented here. It consists in
converting the function to be inverted into the form of a sum of simpler functions,

the inverse transforms of which can be found in the transform tables:

F()=F,(8)+Fy () + . .. + Fa(s) (5.78)

The Laplace transform, for which we require the time inverse generally has the
form P(s)
F(s)= —= (5.79)
0(s)
which is obtained by the Laplace transformation of the general ordinary differen-
tial equation, Eq.(5.57). Here P(s) and Q(s) are polynomials in s such that the order
of the numerator is less than that of the denominator (if not, then it has to be
converted into such a form by division).

Next the roots of polynomial Q(s) are to be obtained. Q(s) is factored into its
roots:

0 =(—5)(s—5) ... (s—5,)=0 (5.80)
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On the basis of Eq.(5.80) the function F(s) can be expanded in terms of the roots
of Q(s):
P _ G
o) s—s5 s5s—5 S—8,

F(s)= (5.81)

The inverse transform of Eq.(5.81) is simply (cf. Table 5.4) ‘
SO =Ce"' +Cre™ + ...+ Cye™t (5.82)

The constants C;, C, ... C, can be determined by making use of the fact that

- Eq:(5.81) is an identity that is valid for every value of s or by applying the following
relation for distinct roots:

Ci=1lim[(s—s)F(s)), i=1...n (5.83)

58

Equation (5.83) can be checked by applying it to the right-hand-side of the
identity [Eq.(5.81)]. Approaching the limit s—s;, all terms containing C; (where
J#1i) become zero, except the term containing C,, which is C;- 1.

If some roots of Q(s) are repeated, the procedure is slightly different. Consider,
for instance, that one of the roots of Q(s) is repeated twice, thus Q(s) is factored
into the following equation [Q(s) is of order (n+ 1), it has » roots]:

Q©)=(~5) (s—s5,) . (s—s,) (5.84)
In this case F(s) is to be expanded as follows:
P(S) C1 C2 C3 Cn+ 1
F(s)= = + + ..+ == 5.85
©) o) (s—s5) s—8 §—8 §— S, (585)

Constants C; and C, are determined as:
C,= lim [(s—s5,)* F(s)] (5.86)

§—8y

C,= lim |:§-S- (s——sl)"F(s)j| (5.87)

sy

Example 5.3.7. First-order lag. Ramp response
The unit ramp function is x(¢#)=1-¢ (Fig. 5.36). Its Laplace transform is

1
X(S)= ;‘2—

The Laplace transform of the ramp response of a first-order lag is obtained from
its transfer function

As 1

Y()=GE) X ()= (—m> <;?> (5.88)
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Equation (5.88) is to be rearranged so that the coefficient of the highest power of

s in the denominator is 1:
A1 (1)
Y(5)= T ( L> > (5.89)

+
STT

It is not necessary to write Q(s) in the polynomial form, since it is already in the
required factored form. It is evident that Q(s) has three roots:

S =— -, S2=0, S3=O

Applying Eq.(5.85), Y(s) is expanded in partial fractions:

Y=/ G 6, G (5.90)
r s+ —1— s y
T
The transform of Eq.(5.90) is obtained by using Table 5.3:
t
()= i‘j,i(cle‘T +Cyt+Cy) (5.91)
C, is determined by applying Eq.(5.89):
1
s+ -]—,
C,= lim ———— =177 (5.92)

s>t (S+ i) 5
T

C, is determined by applying Eq.(5.86) to Eq.(5.89):

s2

C=lm—3 =T (5.93)
=0 <S+ .l.) s2
T

C; is determined by applying Eq.(5.87):

=lim———— =72 (5.94)

C,, C, and C, are substituted into Eq.(5.91) to obtain the required time re-
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sponse:

y()= %S(T%‘ﬂz“- (—T7) =As[Te"%+(z-T)] (5.96)

The response of a P-element with a gain Ag to a unit ramp input 1-¢is y(t)=
=At. This cau be compared to the response of the first order element, which is

()2 As(t—T)  for t>3T (5.97)

since e™*=0.05, e *=0.018, the first term in Eq.(5.96) dies out with time.

The ramp response is shown in Fig. 5.38. It can be seen from both the figure and
from Eq.(5.97) that the ramp response of a first-order process lags by T, its time
constant, behind that of a proportional element.

Block diagrams

The transfer function representation has the convenience that the output of a
process is obtained by simply multiplying its transfer function by the input:
Y(s)=G(s) X (s), cf. Eq.(5.63). Owing to this feature it is very suitable for the
treatment of networks. Moreover, since the Laplace transformation is linear,
addition and subtraction of time domain signals also holds for their Laplace
transforms.

A similar quality of the frequency functions has already been utilized in Section
5.2.1,

In the frequency function representation the elements were represented by their
frequency functions. In the transfer function representation the elements are
represented by their transfer functions, which are the blocks, and the signals are
represented by their Laplace transforms, which are the arrows.

The overall frequency functions were derived for elements in series (Eq.5.2), in
parallel (Eq.5.3) and for a simple negative control loop (Eq.5.4). Analogous
equations are obtained for the Laplace transforms of the signals and the transfer
functions of the elements.

Elements in series:

G($)=G(5) - G () - G3(8) - ... - G(®) (5.98)
in parallel:
G =G+ G+ ... +G,(s) (5.99)

The transfer functions for a simple negative feedback control loop, with a block
diagram shown in Fig. 5.39 can be derived as
G __ Gp(®
D(s) 1+Gc(9)G()
_ GO _ GG,
R(s)  1+Gc(5)Gs(9)

Wy (s)=

(5.100)

W (s) (5.101)




5.3 Linear control theory » 329

disturbance
D{(s)

control variable
C{s)

set
R{s)=Ceq(s)

manipulation error

Fig. 5.39. Negative feedback loop. To the derivation of its transfer function

The block diagram of a positive feedback loop is shown in Fig. 5.40. The transfer
function for this loop is derived as:

Yis) ___ G©

"O=5%5 = TGO HE)

(5.102)

To facilitate calculations with the block diagram linear transformations are
possible. Some of these are shown in Fig. 5.41.

Y(s)
B

Fig. 5.40. Positive feedback loop

Stability analysis
Recall Eq. (5.82) for the time inverse of a Laplace transform:
f@O)=Ciet+Coe™ + ...+ Cre™ (5.103)

Here, s,, s,,...5, are complex numbers obtained as the roots of Q(s), the
characteristic polynomial [cf. Eq. (5.80)], and the roots are the characteristics of the
time function f(¢), which may be unbounded, bounded or oscillating.

Case 1. All characteristic roots are real negative numbers,
€. g8 5= "“kl, 8= “"kz, etc.
Then lim f(¢)=0, f(¢) is bounded, because lim e *'=0

t— o0 t—oo

Case 2. One of the characteristic roots is a positive real number, s,= +k.
Then lim f(¢)= o, unbounded, because lim e*** =0

t— o t— oo
Case 3. There is a complex pair among the characteristic roots; they always
appear as conjugate pairs.




Case 3a.

Case 3b.
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original transformed
Xis) + 5 X3(s) )(1_(5)’- + X3 (s)
(<) G{s) . G(s)
dots))
Xls) Xa(s)

+ + X3
O e -
+ +
X
X2 2 ml1/6
X
Xl XI’ ! G1 X X
—&= X3 Gz 3 G 4
Xz 3
X X5 6
2 G2 Gy l——’ 2
Gy 3y Xs
Gy G,

Xq Gy X2
1+ G2 &

X1 + XZ
G

7
{+G, Gg

Fig. 5.41. Linear transformations of the block diagram

S=—a+ib, s,=—a—ib, i. e. the real parts of the conjugate complex
roots are negative.

Then lim f(r)=0, bounded, with damped oscillation, because

t— 00

lim (Cie™**®+Cpe™*"?)=0

t—0o0

and the factors e and ™™ indicate oscillations with frequency b.

Sx=+a+ib, s,=+a—ib, i. e. the real parts of the conjugate complex
roots are positive.
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Then lim f(#)=co, unbounded (the oscillations are expanding), be-
t—c0

cause lim (Cpe™*® + Cpet* ™) =lim (Cye e ™ + Cre™*Cpe™ ™) = o0,
10 t—

and the factors e® and e~ indicate oscillations with frequency b.

Note: For a pair of conjugate complex roots,
a.=—a+ib, sy=—a—ib, the characteristic polynomial Q (s) is conveniently
factored as (s—s) (s—$,) =(s+a—ib) (s+a+ib)=s5+2as+a* +b*=(s+a)* + 1.
In the expansion in partial fractions this will give the two terms:

Ch+Cp(s+a)
(b+a)*+ b
for which Table 5.4 gives

g—l[ Ckb ]_l_g—l Cm(s+a) —
(s+a)*+b? (s+ay+b
=Ce~“ sin bt+ Cpe™* cos bt

Case 4. There is an imaginary pair among the characteristic roots: s =ib,
Sp= —ib.
Then f(¢) is oscillating, undamped with a constant amplitude and fre-
quency b.

Stability has been defined in Section 5.1. A process is stable when, after a
pulse-like disturbance, it returns to its original state within some time. This is
equivalent to the statement that the limit of the impulse response of a stable process
is zero, for t—o0. '

For a unit impulse, f(£)=1-6(2), F(s)=1.

The Laplace transform of the impulse response is:

Y(5)=G(s) X(5)=G(s)
Thus for a stable process:

1im(<Z "' [G()])=0 (5.104)
t—=
The stability definition expressed by Eq. (5.104) suggests the stability criterion
that, for a stable linear process, the real parts of all characteristic roots of the
transfer function must be smaller than 0. If the characteristic roots of the transfer
function are plotted in the complex plane, all roots must lie in the left half-plane
(Fig. 5.42).
Unfortunately, the stability criterion based on the examination of the charac-
teristic roots is of only limited use. ‘
The roots of the denominator of the transfer function must be known, which
may cause problems for a higher-order process. For a control loop, even if the
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Im+ .
stable region unstable region

SG =#3
sg——= Re +

stability limit
/

Sg=-2j

Fig. 5.42. Stable region of characteristic roots

roots of the open loop transfer function Gy (s)= Gc(s) Gs(s) are known from the
model of the process [refer to Eqs (5.100) and (5.101)], and even if the open loop
is stable, the characteristic roots of the closed loop transfer function, i.e. the roots
of the characteristic equation

14 Go(s) Gg(s)=0 (5.105)

are unknown, and the closed loop may be unstable. Equation (5.105) cannot be
solved to find its roots if dead time is involved, because a dead time process can
be approximated by a differential equation of infinite order.

Routh—Hurwitz stability criterion

The Routh-Hurwitz stability criterion is used to check the stability of a system
for which the characteristic equation can be written and is of finite order, without
solving the equation to find the roots. The procedure can also be applied to control
loops, where the characteristic equation is:

0(5)=1+Gc(s) Gs(s)=0 (5.106)

Expand the characteristic equation into the following form:
O@)=a,s"+a,_ 5" '+...+a;s+a,=0 (5.107)
Let a, be positive. If it is negative, both sides of Eq. (5.107) should be multi-
plied by —1.

First step: If any of the coefficients a,, a,_,...aq, is negative, there is at least
one characteristic root which has a positive real part, and the system is unstable.
No further analysis is needed.

Second step: If every coefficient is positive, then the following array (Routh array)
should be constructed:
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1 a, ay_2 Qy_4

2 dy1 Gn-3 On_s

3 b, b b

4 ¢ c, s

5 d 4 d

n—1 w W, w; (5.108)

where the coefficients c, d,. . ., etc. are calculated as

Ay Oy _p— 0nly_3

b]z
Ay
- Ay _10y_4— Qyly 5
b=
au—-l
_ L
by=
a,
- blan~3_an——1b2
= ——'———‘““—b
1
_ba,_s—a,_\b;
Cy = —"""——"“—b
1
b, —byc
d1= 1Y2 1-2
4]
cb;—bic
d2= 1Y3 1+3
9
etc. (5.109)

Examine the elements of the first column of the array in (Eq. 5.108):
Ay, Ny 15 bl: Cys dl, cees W
A system is stable if all elements in the first column of the Routh array are positive.

Example 5.3.8
Check the stability of the process having the following transfer function:

A T
G(s)= —
©=1"7 1
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The characteristic equation of this process is:

o®=s5— —;: =0

The characteristic root is evident: s, =+ 1/T. It is positive, thus the process is
unstable.

Check the stability of this process by the Routh-Hurwitz criterion. a,=1,
i e. it is positive, a,_, = —1/T, i. e. negative. Thus, the process is found to be
unstable by this method, too. The impulse response of this process is obtained as:

A

T

yO)=27"G(s) X()]= £ oo

T

e+

w3l

y()=—

N

y—00 when t—oc0. Thus, the process is unstable.

Stabilize this unstable process using proportional control. Denote the propor-
tional gain of the P-controller by 4. The block diagram of the control loop is
shown in Fig. 5.43. Eqs (5.100) and (5.101):

A
1—-Ts

Q(S)=1+Gc(S)Gs(S)=1+< >Ac=0

which can be arranged to
O@)=1-Ts+Ad.=—Ts+(1+AA)=0
The characteristic root is

T

s, is negative, and the control loop is stable if

S1=+

1
A-<0 d Aol > —
c< an [Acl 1

D{(s) " cls)

+) 1-Ts
M(s) =
A R(s)

+

Fig. 5.43. To Example 5.3.8
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5.3.5 The frequency function method

The analysis of frequency response is the third alternative method (besides the
differential equation method and the transfer function method) for describing and
examining the dynamics of linear systems. All these methods contain essentially the
same information.

The frequency function method has already been mentioned and used in Section
5.2. It has the advantage of being directly applicable to dead time processes and
to distributed parameter processes, and of being capable of utilizing direct ex-
perimental results. Frequency functions can be depicted as Nyquist and Bode plots;
the resulting Bode plot of elements in series can easily be constructed by the simple
addition of distances in the diagram. The stability of a negative feedback loop can
easily be checked by the use of the Nyquist stability criterion (Section 5.2.1).

Determination of the frequency function

The frequency function of a process can be determined in three ways.

1. Experimentally, as already described in Section 5.2.1 and shown in Fig. 5.11.
The process is driven by a continous sinusoidal signal until, after some time,
a sine wave of the same frequency can be detected at the output. The result
of the experiment is
(a) the amplitude ratio of the output to the input sine wave, this is the

magnitude of the frequency function vector |G(iw);
(b) the phase shift of the output with respect to the input, which is the phase
angle argument of the frequency function, ¥ G(iw).

The aim of the investigation is to obtain the frequency function over a
broad frequency range, so it is a lengthy and expensive process (in the case of
chemical processes, which are slow), but in the case of noisy signals it is
advantageous that only one single frequency signal is to be detected.

The frequency function can also be computed from responses to input
signals containing a broad spectrum of frequencies, e. g. from impulse or step
responses, or responses to white noise with the aid of Fourier analysis.

2. From the differential equation of the process, which can be solved substituting
x()=a sin wt, in simple cases, like in Section 5.2 for dead time, interval and
differential elements.

3. From the transfer function, making the formal substitution s=iw.

Frequency function from transfer function

The procedure is illustrated by the example of the first-order process.

Example 5.3.9. First-order lag. Frequency function
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The differential equation of a first-order element is given by Eq.(5.59):

d
d); +y=Asx

By Laplace transformation:
TsY(s)+ Y(s)=AsX(5)

This can be rearranged to obtain the transfer function:

Y(s) G(s)=
X@s) Ts+1
Substitute s=iw
. 1 (—iTo+1) ( 1 . T )
= =4 - 5.110
Glo)=As 72037 (CiTw+1) T 1rrer) OO

This has the form G(iw)=Teg+iImg [cf. Eq.(5.9), Fig. 5.12]. The magnitude
and the phase are obtained as:

|G(iw)| = /Re% +Im3 =

-1 (o) * () -
=4s 1+7%0?) T \1+T%0?) = (5.111)

1

S,/l—i—Tzco2

é:G(ico)=atrctanI—m—ci =arctan (—oT). (5.112)
Reg

=4

The frequency function can be tabulated for different frequencies, e.g.

o ol |G(w) xG(io)
0 0 Ag 0° .
1 1 0
7 1 4 —45

-0 =00 Ag— -—>-90°

7
1
Tw

For small frequencies (w<1/T) (e. g. close to the steady state) the first-order
element resembles a P element; for high frequencies (w>1/T) (e. g. at the start of
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a step or a pulse driving signal) it resembles to an I element. The Bode and the
Nyquist diagrams of the first-order element are shown in Fig. 5.44. The amplitude
characteristic in the Bode diagram is ‘broken’ at frequency 1/7, called also the
‘corner frequency’ or ‘breakpoint frequency’.

The general method for obtaining the frequency function from a transfer func-
tion can now be summarized:

1. s=iw is substituted into the transfer function.
2. The expression obtained is arranged in the form:

G (iw) = Reg(iw) + i Img(icv) (5.113)

3. The magnitude of the frequency function is:

|G(iw)| = /[Reg (i) + [Img (iw)]? (5.114)
4. The phase angle of the frequency function is:

Img(iw)

G(iw)=arct:
X G(iw)=arctan Reo (i)

(5.115)

5. The frequency function is evaluated for different frequencies.

It still remains to prove that a simple substitution of s=iw into the transfer
function of an arbitrary nth order system yields the same frequency function as that
obtained experimentally by driving the system with a continuous sine wave.

10+ w=+
‘ Corner frequency Im +
161 4. S i 1
A [ 147252
01- { |
‘ ' N w=0 10
0.01 . 1J/T g y1e s f—t== Ro+
(0 I - Tw Gp_i 1Jw=0
A6 ool _______ ' % Sy S
-90Y-—— _i . v
001 01 10 10 100
wfad
min

Fig. 5.44. Bode and Nyquist plots of first-order lag '
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The transfer function is:

Y(s)
X(s)
where both Y(s) and X(s) are reciprocals of polynomials in s; Y(s) are of nth and

X(s) are of mth order where m <n, and both polynomials can be factored into their
roots:

G(s)= (5.116)

_Y(®) _ (=p)(s=p2) ... (5—Pm)
CO= X = o5 Gs2) .- (5=5,) (11D

The input is a sine wave the Laplace transform of which is, from Table 5.4,
X(d)=a (-;-‘"—2-) (5.118)
s+

- _[ a0 |[G=p)(—P) ... (S—Pn)
ro=x900= [ |[(E5ELEE] n

Expansion in partial fractions gives

Gl B, C D 2

= 5.120
sS4+t stio s—io  s—s §—8, ( )

Y(s)=

Determine B, C, D, . . .(Q, using Eq.(5.83) in Section 5.3.4, and making use of the
fact that Eqs (5.119) and (5.120) are identical equations for all values of s:

B= lim [(s+iw)¥(s)] = lim [ﬂ"—%‘-‘l} =— % G(—iw)

5 —i® s—oio | S—

s—io s+ iw 2i

C= lim[(s—iw) Y(s)] = lim [ﬁ’ﬂg-(s—)] = 2 G(iw)

= lim [(s—s,) Y(s)]= lim [(s sl)( e )G(s)]

s—§; s8]

etc.

Substituting B, C,D... into Eq.(5.120) and taking the inverse of the time
domain:

y(t)= — L G(—iw)e ™ + 2 G(iw) e+ Y. fe* (5.121)
2i 2j =1

For a stable system all the characteristic roots s;, s, ... s, ... s, have nega-
tive real parts. Thus, with time, all the exponential terms in the sum in Eq.(5.121)

decay to zero. So, as time passes, Eq.(5.121) becomes

y(t)— [G(zw)e"’"—G(—zw)e““"] (5.122)
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Note: G(iw) and G(—iw) are conjugate complex functions, which are charac-
terized by equal real parts and imaginary parts that are also equal but opposite in
sense. Represented in polar coordinates, the magnitudes are equal, and the argu-
ments are equal too, but of opposite signs.

Using the Euler equations:

e*=cos x+isinx

i . (5.123)
e ¥=cosx+isinx
we obtain
sin x = —1~ (e*—e ™)
2i
(5.129)
cos x= —21-1- (€™ +e ™)
Write G(iw) and G(—iw) in the polar form of complex numbers:
G(iw)=|G(iw)| &+
G(—iw)=|G(—iw)| ¥ =|G(iw) g~ i¥Gl@
Using these forms: }
ifot+ £ G(ie)] __ e~ ilot+ ¥ G(iw)]
y(£)=a|G@iw)| (5.125)

2i
we obtain the result:
y(1)=a[|G(iw)| sin (wt) + arc G(iw)] (5.126)
Thus it has been proved that

(i) the amplitude ratio is the absolute value of G(s) with “s” set equal to “iw”;

Ces 93

(if) the phase angle is the argument of G(s) with “s” set equal to “iw”.

Example 5.3.10. Response of a first-order lag to a sine input
The response of a first-order element with

Gl)= Ts+1

to a sine input x(z)=asin wt; X(s)= is obtained in the time domain by

s+ o’

taking the time inverse

yO)=2L ' XSGE)=ZL " [Y(5)] (5.127)

aw A w 1
Y(s)=<m>(m1>=“”? _1_)] (5.128)
T

(*+ %) <s +

where
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The roots of the characteristic equation
1
0(s)=(s*+? (s+ —2—,—>=0

are evidently +iw, —iw and —1/T. However, to reduce complex algebraic work,
it is more practical to factor Y(s) as

Y()=ad 2 (B“’+CS+ D ) (5.129)

2 2
s+ 1
S+.__..
T

which, transformed into the time domain, gives

"
y(t)=aAd -C-of(B sin wt+ C cos wt+De_T)

t
=ad % ( /B +C? sin (wt—l—arctan %) +De‘f> (5.130)

The coefficients B and C are evaluated from

2 2
Bw+ Cio= lim —& %) = lim ! <=
s—in 2 1 s—io 4
(sz+co)(s+ T) <s+ T>
_[_1 T %) _1-ior (5.131)
(o D\10e ) e
T T
whence
@
T T?
= C=———— 5.132
1 +@*T? 1+ @’T? ( )
arctan% = arctan (—wT)=¢ (5.133)
and
» 1+ 0*T? 1
A— /B +C?’=ad |———5 =ad ———— 5.134
“T U rory = e G
Coefficient D is evaluated using Eq.(5.83):
1
S+ — , 2
D= lim r = ! T (5.135)

N 1 = )
YT (s2+w2)(s+-jl_,—> —]:;+w2 1+w*T
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Substitute Eqs (5.133), (5.134) and (5.135) into Eq.(5.130):

- N S Py _ (T )\ -y
y(t)-aA[(\/m>sm(wt arctan ( wT))+(1+w2T2> :|(5 136)

Compare Eq.(5.136) with the result of Example 5.3.9 given in Egs (5.111) and
(5.112). After a time longer than 37 the transient decays to zero and the steady-
state part of the response remains: this is a sine wave with the same frequency @

A
1+ T?

g=arctan (—oT)

as the input. Its amplitude is times that of the input. Its phase lag

with respect to the input is

In the case of higher-order elements the transient part is a sum of functions
similar to the transient term in Eq.(5.136). The time necessary for the transients to
decay is longer than 3T,,, where T, is the greatest time constant. Since
chemical engineering processes may have time constants of the order of several
hours, the experimental determination of the frequency function by sinusoidal -
driving is rather expensive and is rarely applied.

5.3.6 Simple linear systems

Table 5.5 contains the differential equations and the transfer functions of the
most important systems. Some of them, such as P, I, D, PI and PID elements, have
been treated already in Section 5.2 and are not repeated here.

Figure 5.45 represents the impulse, step and ramp responses of these systems.

Figure 5.46 shows the frequency functions represented as Nyquist and Bode
. plots.

First-order element

A first-order element is described by a first-order ordinary differential equation.

jy +y=Ax (5.137)
Its transfer function was derived in Example 5.3.4 as Eq.(5.68)
. o
= 5.138
G Ts+1 ( )

The unit impulse response [Example 5.3.5; Eq.(5.72)]:

t

y=22eT
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Fig. 5.45. Response functions of linear systems
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Nyquist 16l Bode A6
A6
G (s) ) 161 ;
4 +i | prl —
P A A N
—_—
A
! S
PT,  AJS
A
P -
Ty Ts+1
PT. ...___i___.
T T2sk2gTsen
7T 177 =
6l
A6
\— s _/]C
A
PI _— 1+ -90%
Ts [1+1s)
+J ‘
PD Ac (1+Ds) Ac N
w=0
1 A
PID A (152 +Ds) +

Fig. 5.46. Frequency functions of linear systems
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The unit step response [Example 5.3.6; Eq.(5.75)]:
b
y(@)=As(1—e7T) (5.139)
The unit ramp response [Example 5.3.7; Eq.(5.96)]:
: v
y(t)=As[Te T+(t—T)] C (5.140)

The response functions to these specific inputs are represented in Fig. 5.38. The
two parameters of the system, 4 and 7, can both be determined from any of
these response functions, as shown in Fig. 5.38. It is important to note that a
first-order element can be distinguished from higher-order and from dead time
systems by its impulse response, which attains its maximum value at the instant of
the disturbance, and by the slope of its step response, which is a maximum at the
instant of the disturbance.

Another method of checking whether the system is truly first-order is using the
response to a step input x(z) =a. Equation (5.139) is transformed into:

ok _t
y(0)=As (1—¢"T)=p(e0)(1-¢7T) (5.141)
which can be arranged to give:

2=y 1

) = (5.142)

In the step response is plotted in a semi-logarithmic plot of In 20)=y@t) against

time, all points must lie on a straight line of slope — ik

The first-order element can also be identified from its frequency function (see
Fig. 5.44). It is important to note that the minimum phase shift exhibited by a
first-order element is —90°. If —100° or —120° phase shifts are measured, the
system is not first-order. In order to determine the time constant, input sinusoids

. . . . 1
with frequencies around the breakpoint frequency, i.e. o= T must be used.

Examples of first-order systems

There are many first-order systems in the chemical industry. Single-capacity
systems which are self-regulating, i.e. which are not integrating clements, are
first-order systems. By analogy with electrical practice, a first-order element is a
capacitor charged through a resistor, and its time constant is interpreted as
capacitance x resistance, T=CR.
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Continuous stirred tank reactor (CSTR)

Consider the tank reactor shown in Fig. 5.47. It is perfectly mixed, thus the
concentration in it is uniform, independent of the position in the tank. As a result,
the composition of the output stream is equal to that in the tank: ¢o=c. First
order irreversible, isothermal reaction takes place in the tank with reaction rate k:

A—-P

The volume holdup in the tank, ¥, is constant. There is no density change thus the
mass balance may be written in terms of volume rates:

input=output + accumulation
W dt=W,dt+dV (5.143)
' However, ¥ =const, thus
=Wy=W (5.144)

Suppose that W is constant in time. The input Vanable 18 ¢, the output is c.
The component balance is:

input = output + consumed + accumulated
We,dt=Wedt+ Vkedt+Vde (5.145)

The component balance can be arranged to give:

w 4 de
= u 5.146
<W+ Vk)c’ c+(W+ Vk) dr 5.146)
This is the differential equation of a first-order element, with
w 4

A= _ T= 5.147
ST Wk’ W+ Vk ( )

Fig. 5.47. Continuous stirred tank reactor




5.3 Linear control theory 347

where V'is capacitance and 1/(W+ Vk) is resistance. In the steady-state de =0, and
dt
from Eq.(5.146):
W
W+ Vk

If the reaction in the CSTR is not first-order, but the reaction rate is a function
of concentration, 7=/(c,), then linearization and perturbation variables are to

be used (cf. Section 5.3.3):
f:é(gi> (5.149)
dc /s

where ¢ is the concentration at the steady state. The steady-state component
balance is:

Ca, (5.148)

Ca

W= We+ VF, (5.150)

where ¢, ¢ and 7 are the steady-state values. The component balance in the
non-steady-state is:

input = output + consumed + accumulated (5.151)
We,dt=Wedt+ Vrdt+Vde
Rearrange Eq.(5.151):

de

dt

Subtracting Eq.(5.150) from Eq.(5.152) we obtain the differential equation in
perturbation variables (é=¢;—¢;, F=r—r)

We,=We+Vr+V (5.152)

Py

dé

dt

Substitute 7 from Eq.(5.149) and arrange into the form of the differential
equation of a first-order element:

W Necor [— X \E (5.154)
or or dz

w+v | w+v (<
dc/: dc/;

AS= _____.W.__..—_- T= V

o\’ or
wW+V|— w —_—
* <5C>a v (ac)é

Parameters A and T both depend on the operation point.
Perfectly mixed tanks are generally first-order elements. It is conceivable that a
perfectly mixed blending tank, where no reaction occurs, where the output is the

Weé.=We+Vi+V (5.153)

whence
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concentration of the blend, and where the input variables are the feed rate and the
feed concentration, is a first-order lag. A perfectly mixed continuous heater (or
cooler) with continuous inflow and outflow is a first-order lag, too: the output is
the temperature of the outflow, the input variables are the temperature and the flow
rate of the inflow, as well as the heat input. Other examples of first-order elements
are:

— thermometer bulb,

— liquid tank discharging through a valve,

— gas tank.

Here the differential equation of the liquid tank will be derived. The derivation
for the case of a gas tank is quite similar.

Self-regulating liquid tank

The liquid level system presented in Section 5.2.3 and Fig. 5.27 is an integrating
process, because its outflow is fixed by a metering pump: the outflow is independent
of the liquid level in the tank.

The liquid tank in Fig. 5.48 discharges through a valve, which represents a
resistance. The flow through the valve depends on the valve opening, which is
included in the valve coefficient &, (k, changes with the valve opening), and on
the pressure drop (p, —p,) across the valve:

W=k, f‘—'g—i’l (5.155)

The dependence of the outflow rate on the liquid level is the strongest when the
whole pressure drop (p, —p,) is covered by the liquid head in the tank:

pi—p2=0gH. (5.156)
Using Eq.(5.156), we obtain the outflow as a (nonlinear) function of the level:

Wy=k, /—Q—"Q—I?r~ =k JH (5.157)

P
V=AH (mf) @ {91'4_9—
Wo

Fig. 5.48. Self-regulating liquid tank




5.3 Linear control theory 349

Linearization around the steady state (W, H) is needed:

= A OW,
Wy=Wy+H 2. 5.158
o=Wo+ < £Y% >H ( )
The steady-state mass balance of the tank is:
T\ 2
W,=W, and H= (—ILZ-Q) (5.159)

thus, in the steady state, the level is determined by the inflow. The mass balance
in the non-steady-state is:

input = output + accumulation
W,dt=W,dt +AdH. (5.160)

Substituting Eqs (5.159) and (5.158) into Eq.(5.160) and rearranging, the dif-
ferential equation of a first-order lag is obtained with perturbation variables:

1 1 dA

@, @
oH )4 9H Jq

W,=H+ (5.161)

The time constant is

where A is capacitance, and

( 6H) is resistance
oWy /a '

Note I: In the case of pressurized tanks, when the pressure loss through the
restriction is covered partly by the liquid head in the tank and partly by the
pressure above the liquid (or by a centrifugal pump), the total effective pressure
drop can be expressed in terms of the liquid head, i.e. py—p,=BegH is sub-
stituted into Eq.(5.156), and the final result is the same.

Note 2: Observe that in this nonlinear process both the steady-state gain and the
time constant depend on the operating point (W, H). Compare this with the result
obtained for the nonlinear CSTR, Eq.(5.154). However, the dynamic gains for high
frequencies are independent of the operating point [cf. Eq.(5.111) and subsequent
equations]: A

|G (i0)| = —F/——=
14+ T%0?

for w— o0 |G(iw)] As
Tw
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For the CSTR |G| — ri
W w

For the liquid level tank |G| — 11
A ow

This phenomenon is frequently encountered in chemical engineering processes.

Second-order systems

A second-order system is modelled by a second-order differential equation:

d’y dy
T? —= +26T— +y=Ax 5.162
P ¢ P (5.162)
where y is output, x is input, Tis time constant, 4 is process gain, and ¢ is damping
factor.

Second-order systems can be classified into three categories according to the
value of the damping factor.

i [ 4 1406 [ ] vl
— L
T s+1 T s+1

Fig. 5.49. Two first-order lags in series

1. Overdamped system

In this case the damping factor is greater than unity. This happens whenever two
first-order systems are in series and their time constants are not equal. For example:
two CSTRs in series, a thermometer in a heat exchanger, buffer tank and CSTR,
and so on. Figure 5.49 represents such a case.

The transfer function is:

CY(0) =< 4, )( 4, )_ A4, _ 4
X \Tis+1/\Tps+1) T\ T8 +(T,+T)s+1 T2 4+28Ts+1

(5.163)
Comparing Eq.(5.163) with Eq.(5.162), the parameters are:
A =A1A2
T= T\ T, (5.164)
&= ! (T‘JrTZ) (5.165)
JT. T, 2

If T)#T, then £<1.




5.3 Linear control theory 351

The responses to typical unit inputs are (Fig. 5.45):

t 1
unit impulse =% A = (eT—eT) (5.166)
17— 42 ’

The slope of the impulse response is a maximum at the instant of the
disturbance A/(T,T,). The impulse response has a maximum at time
tmax‘: \ TXT2~

t t
unit step y(t)=4 [1 - (T,e_T—l—— Tze_'T_z)] (5.167)

I\ -T,

dy) _
<df 1=0 0

T, - T, (rie T2 )+ =i+ TZ))]

unit ramp y(1)=4 [

for t>3T, and t>3T,, y(@)=A(t—(T,+Ty)) (5.168)

2. Critically damped system
This is the same as Case 1, presented in Fig. 5.49, with the transfer function in
Eq.(5.163), but T, =T,. Thus the model parameters are

T=JT,T,=T,=T, (5.169)
Fe L (T1+T2)=1 (5.170)
JTT N 2

The system is called critically damped, because it does not exhibit oscillations
in response to the typical inputs but attains the steady state faster than over-
damped systems with the same T parameter. The responses to typical mputs are
(Fig. 5.45):

t

. unit impulse y(@)= —-—t T (5.171)

. dy A
with (—&Z')O: '*]:i‘ and t,,,=1?
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unit step y()=4 [1 —e“%(l + %)] (5.172)
with <%)0=0
unit ramp ()= A[e Tt +2T)+(1—21)] (5.173)

for t>3T y(@)=A@-2T)

3. Underdamped system

The damping factor is less than unity, but always greater than zero. Second-
order underdamped systems cannot be constructed from two first-order elements
in series; they are second-order elements in nature, which is due to inertial effects
and internal interactions. Examples of second-order underdamped systems are: a
U-tube manometer; a mass suspended from a spring, etc.

The underdamped character manifests itself in the impulse or step response by
overshooting the final value and reaching it after damped oscillations. The fre-
quency of the damped oscillations is

1 B
=—=./1-& 5.174
0= 3 (5.174)

whence the meaning of parameter T": 1/T would be the oscillation frequency if the
system were undamped, i.e. for é=0. .

The responses to typical inputs are presented in Fig. 5.45.

All second-order systems (independent of the value of the damping factor) can
be distinguished from first-order systems by examining the initial slopes of the
impulse and step responses. The initial slope of the impulse response of a first-order
system is infinite, while that of a second-order system is a maximum (for higher-
order systems it is zero). The initial slope of the step response of a first-order system
is a maximum, that of second- (or higher-) order systems is zero.

The transfer function of second-order systems is obtained by the Laplace trans-
formation of the differential equation, Eq.(5.162): :

_Ye _ A _ AT
O=%6) = Teems1 22 1 G173
T T

The magnitude and phase angle of the frequency function are obtained by sub-
stituting s=iw into Eq.(5.175) and following the procedure described in Section
5.3.5

|G (iw)| = A (5.176)

V(A= T + (2t T)
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¥ G (iw) =arctan <—— -1—%%02%;) (5.177)

Of course the response to a sine input with frequency w is, in the case of
underdamped systems, another sine wave with frequency o, but the frequency
function shown in Fig. 5.46 reveals its underdamped character. There exists a

resonance frequency @ == ~;—;, where the dynamic gain of underdamped systems is

several times the static gain. Important values of the frequency function are:

w0 : |G|—>A ¥G-0° (5.178)
A o
T=1:161= 3 ¥G=—90 (5.179)
oo |Gl= -2 G- —180° (5.180)
0*T?
dlog |G|
LA RN, Iy 5.
Tociol 2 (5.181)

which represent the slope of the Bode plot.
Thus second-order systems may readily be identified from their frequency func-
tions, which should be determined around the frequency w=1/T. (
It is important to note that the minimum phase of second-order elements is
2-(—90°)=—180°.

Higher-order systems

Elements of order # are described by nth order ordinary differential equations,
such as Eq.(5.57); their transfer functions are the reciprocals of nth order polyno-
mials in s.

" They usually consist of first- (and second-) order elements in series, in other
words, they are multicapacity systems. The capacities of a multicapacity system can
be interacting or noninteracting (isolated). In noninteracting multicapacity systems
the signals are transferred in one direction only; the conditions in the mth capacity
do not depend on the conditions in the (m + 1)th capacity. A cascade of CSTRs is
an example of a noninteracting multicapacity system. In such systems the time
constants of the individual capacities can be calculated independently from their
mathematical models (or T;=C;R)).

In interacting multicapacity systems the signals are transferred in both direc-
tions, as in a series of interconnected gas tanks, where a pressure change at both
ends of the system would cause the pressure to change in all tanks (Fig. 5.50).

Other examples of interacting multicapacity systems are: multitray distillation
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Fig. 5.50. Interacting gas tanks

columns, countercurrent extractors and many other chemical engineering proces-
ses. Consider the series of three interacting gas tanks presented in Fig. 5.50.
The input variables are p, and p;. In the steady state
Y - - - pl _132 132_133 ﬁS_p—fi ﬁ4_ﬁ5
Wi=Wy=Wi=W, = == = =
1 2 3 4 Rl .R2 R3 R4

In the non-steady-state
input = output + accumulation

P —Ps dp,
C —l
R, R, oy

Pr—Py _ Py—Ps +C, _(_121

R, R, dt

Ps—Ps _ Ps—Ps dp,
= C, 4
R, R, + &g

This third-order system is described by a mathematical model consisting of three
first-order differential equations which, however, are not independent of each
other. If interaction is ignored, the equation for the first tank can be arranged as:

1 A 1 A = A + __1_ . %
1.1 1P T T )
R] Rz R2 R3 Rl R2

whence the time constant for the first tank can be expressed as:

Tl= .____le—_’ and I'l—._- _—_C_‘._..._
T, 0 T,
R, R R, R,

If interaction is not ignored, the mathematical model can be solved to obtain three
time constants T; % T;. The effect of interaction is to increase the greatest
individual time constant and at the same time to reduce the smaller ones. Interac-
tion will make the process more sluggish (it increases the sum of the effective time
constants) but easier to control.
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Fig. 5.51. Examples of interacting and noninteracting multicapacity systems

Some examples of interacting and noninteracting systems are shown in Fig. 5.51.
The step responses are compared in Fig. 5.52.

Interacting or not, n-capacity systems are modelled by nth order differential
equations and nth order transfer functions.

The time responses of higher-order systems may be calculated by inverse trans-
formation of the Laplace transforms, but this needs considerable algebraic work.
Typical responses in analytical form up to fourth-order may be found in hand-

books. For higher-order systems numerical integration is easier, using analogue or
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digital computers. The program T4 CS, the user manual of which is reproduced in
the Appendix, can be applied to that end.

The responses to the typical input signals given in Fig. 5.45 show the common
characteristic that, at the start of the response, there is no change in the output
signal, as if the system contained a dead time. This apparent dead time grows with
the order of the system,; it is first observed in the step response of the third-order
system.

The order of the system cannot be determined from impulse, step or ramp
responses by inspection, as was the case with first- and second-order systems. For
this purpose frequency functions are needed.

The frequency function of an nth order system is characterized by its minimum
phase and by the slope of its Bode plot:

for w—w X G(iw)— —n-90° (5.182)

dlog|G(iw)| |, _, (5.183)
dlogw

The Nyquist curve of an nth order system passes through » quadrants.

The time constants of the system can be determined from the amplitude-
frequency diagram of the Bode plot, by drawing tangents with slopes 0, —1, —2,
—3, etc. The method, which is shown in Fig. 5.53, is easy to understand if one bears
in mind how the Bode plot of a higher-order system is constructed from its 1st and

‘ Noninteracting

E;‘*) .

n1st order elements
1 in series

10 _t
3T,
Fig. 5.52. Step responses of interacting and of noninteracting systems
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Fig. 5.53. Identification of time constants of a multicapacity system

2nd order elements. Recall that

|G(iw)|=[]1GGw)|,  thus

1

log |G| =} log|Gil,
and XG =Y XG;.

Dead time

Dead time (or true time delay) systems have already been treated in detail in
Section 5.2.2.

The differential equation method cannot be applied to dead time systems be-
cause they correspond to infinite-order systems.

The transfer function and the frequency function methods are applicable, how-
ever. The transfer function is obtained directly from the equation

yl=A4 sx[t—Tp) (5.184)

where y[¢] is output at moment ¢,
Ay is steady-state gain of the process, and
x[t— Tp] is input at moment (¢— Tp).
The Laplace transform is

Y(5)=As XL [x(t— Tp)]=As X (s)e "™ ( (5.185)
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using the time shift theorem from Table 5.3. Thus the transfer function is:

G(s)= % — AgesT (5.186)

and the frequency function by substituting 5= iw:
G(iw)=Age~ o (5.187)
Recall the exponential form of the complex number [cf. Eq.(5.9)] thus
|G(in)| =Asi ¥ G(iw)= — Ty
as was found in Section 5.2.2.
When : Ww— 0, X G(iw)—> — o0

This means that the dead time element is a non-minimum-phase element.
The effect of non-minimum-phase behaviour on the quality of control has been
shown in Section 5.2.2. Thus it is important to identify dead time in processes.
Pure dead time is easily identified from typical responses (Fig. 5.45). If dead time
is in series with capacities (single or multicapacity systems), pure dead time and
apparent dead time in a step response are hard to distinguish from each other.
For purposes of controller setting, capacity systems with or without pure dead
time are generally approximated by a dead time-single capacity or a dead time—two
capacity model. The determination of the parameters of the dead time-single
capacity model from the step response is shown in Fig. 5.54. The approximate
transfer function is
AS e—TDs

G(s)=
) Tys+1

(5.188)

where Ty, is the effective dead time,
T, is the effective time constant, and
Ajg is the steady-state process gain.

Step: £ {t)=a

55 B P ‘

Zom

ol n Time

Fig. 5.54. Approximation of multicapacity step response
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Fig. 5.55. Approximation of multicapacity process by first-order lag with dead time, Bode plot

The frequency function of the approximate model should fit that of the original
process in the vicinity of the critical frequency, since it'is used to determine
controller settings (Fig. 5.55).

Distributed parameter systems

So far we have discussed lumped parameter systems consisting of completely
mixed units where the process variable is a function of time only. These processes
are described by ordinary differential equations.

In distributed parameter systems the process variable is a function both of time
and of position. Such systems are described by partial differential equations. The
mathematical treatment of such systems is a little different. Applying Laplace
transformation, ordinary differential equations are obtained, the solution of which
gives the transfer functions directly.

The procedure is shown using a tubular reactor (Fig. 5.56) as an example. This
is a unidimensional problem with axial symmetry. We suppose the following
conditions: plug flow, no density change, no diffusion effects, no thermal effects
(isothermal reaction).

1 de

The reaction rate r= — —
V ds

value of (%) can be used over the length of the reactor.
t=0

is dependent on concentration, but an average
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Fig. 5.56. Tubular reactor

The component balance is written for the volume element dV'=A4dz of the
reactor of lenght L.
In the steady state

input= output +consumed
we = W(E (gc> dz) Fav (>189)
In the non-steady state
input= output +consumed + accumulated
We = W(c+ (%) dz) +rdV+ V%% (-190)

The perturbation variables are defined as:

é(z, t)y=c(z,t)—2(z,0) (5.191)
, Pz, t)=r(z,t)—7(z, 0) (5.192)

F(z, t) is function of é
Mz, t)= ( ) é(z, 1) . (5.193)

By subtracting Eq.(5.189) from Eq.(5.190) and substituting Eq.(5.193) and
dV=Adz, the linearized partial differential equation in perturbation variables is
obtained:

0= W-—d +A(a’) cdz+ a2 d, (5.194)
oc/, ot
giving:
0é or\ . 0¢
T (ac> “t o (5.199)

Apply Laplace transformation:

dC(s) <6r
dz 0

) C(s)+sC(s) (5.196)
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Separate the variables and integrate between the limits z=0 and z=L:

Ci(s) L
J __é_&__ = %Z. (5.197)
Co(s) [(—-r-) +s} C(s) 0
oc/,
1 C(s) L
In 22 = = =T, 5.198
(ar) CO (S) v D ( ) )
=] +s
oc/,
then the transfer function from output ¢, to input c, is
1210} =e'T°(g_£)o‘e‘T°s=ASe‘T°s (5.199)

Co(s)

Thus a plug flow tubular reactor with no diffusion effects corresponds to a pure
time delay, i.e. n—>oo perfectly-mixed volume elements. If the velocity is not
uniform in the cross-section (e.g. the flow is laminar or turbulent, diffusion and/or
back-mixing exist), the tubular reactor corresponds to a multicapacity system, the
order of which depends on the mixing conditions.

The transfer and frequency functions of distributed parameter systems may also
be approximated by first-order dead time models [Eq.(5.188)], or second-order
dead time models. '

5.3.7 Control loop behaviour

Open loop transfer and frequency function

The open loop frequency function is important for checking the stability of the
closed control loop. The method has been introduced in Section 5.2.1 and was
applied in Section 5.2.2 for dead time process and in Section 5.2.3 for pure capacity
or integrating process. It is based on the simplified Nyquist stability criterion [see

Eq.G.12)] L(io) = Ge (i) G (i) = — 1 (5.200)
. ¥ L(i0) = ¥ Ge(io) + X Gs (i) = —180° (5.201)
and |L (i) | =1=| Ge(ie) | G licw) | =

=Aclgc(io)| Aslgs(iw)|= (5.202)

=K|gc(im)| |gs(iw)|

where L(iw) is the open loop frequency function,
w=w,, is the critical frequency, if Eq.(5.201) is satisfied,
K=A.Ajg is the loop gain,
K=K, and Ac=Ac, max is the critical gain, if Eq.(5.202) is satisfied.
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Open loop frequency function with P-controller

The P-controller (i.e. the ideal P-controller) has no phase lag at any frequency,
thus it does not modify the phase-frequency function of the controlled process.
This characteristic offers the possibility of determining the critical frequency of the
process alone (called natural or ultimate frequency), i.e. the frequency at which

¥ Gy (iwg) = — 180° (5.203)

where wj is the natural frequency.
For processes with known parameters, the frequency function of the process is
calculated, plotted on a Bode diagram, and the natural frequency is simply read off.
Continuous cycling of the signals in a control loop occurs if Eq.(5.200) is
satisfied:

AcAslg(img)| =1 (5.204)
i.e.
1
AC max — A or
' Aglgs(icg)|
* 1 S (5.205)
" T gsioy|

Ac,max 18 read simply from the Bode plot of the process.

For industrial processes with unknown parameters A¢ .., and w, are deter-
mined experimentally by trial. The loop is closed through a P-controller and the
gain of the controller is changed until continuous cycling of the process output (or
the manipulated variable) occurs in response to a step input. The frequency of the
output signal is ,, the natural frequency of the process, the gain set at the
P-controller is Ac ., the ultimate gain. This method has been described in
detail in Section 5.2.6. o

The method fails for some processes: even with the controller set to its highest
proportional gain, continuous cycling cannot be achieved. The reason for this is
explained below.

The pure capacity, or integrating process with the transfer function

Gs(s) = é:f— (5.206)

has a phase lag of ¥ Gg=—90°, independent of the frequency of the input sig-
nal. As has already been discussed in Section 5.2.3, this process can be controlled
safely by a P-controller set to the largest possible gain, since the phase shift cannot
cross —180°. The first-order lag process with the transfer function

As

Ge(s)=
W=7

(5.207)
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P—control

Fig. 5.57. Second-order process with P-controller is always stable

exhibits a phase lag (cf. Table 5 .3)
¥ Gs(iwy=arctan (—o7)

For w— 0, the minimum phase ¥ Gs——90°, which is the same situation as
was encountered with the pure capacity process.
A second-order lag process with the transfer function

Gs(s)= (5.208)

s
T2 +2ETs+1

exhibits a phase lag (see Section 5.3.6)

, 26T
Gy (i =arctan<— ———————)
¥ Gs(io) —T?

which has a minimum for @w—0o0: X Gg——2-90°. At the same time the dy-
namic gain of the process approaches zero:

A
for w—o0 |Gs| — ;—)—2%;
The situation is best visualized in the Nyquist diagram, Fig. 5.57. It is evident that
a second-order process may be safely controlled by a P-controller set to the highest
possible gain; oscillation will always be damped.
Processes with dead time or processes higher than second-order can be brought
to continuous cycling with a P-controller.

Open loop frequency function with PID-controller

Any combination of controllers other than proportional ones will substantially
modify the open loop frequency function as compared with that of the process.
In Fig. 5.58 the Bode plot of a process is shown, together with that of a
PID-controller. It is evident that the critical frequency of the open loop will be
closest to the natural frequency of the process if the I and D parameters of the
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controller are set so that

1 1
T<m< 3 (5.209)

At the same time this choice of parameters will also have less effect on the’
dynamic gain of the loop, in comparison with that obtained with a simple P-
controller. If the Bode plot of the PID-controller were to be moved towards higher
frequencies, i.e. if 1/7 were increased, this would add to the phase lag of the open
loop, decreasing the critical frequency. This implies a slower control loop. Simul-
taneously, the frequency-dependent gain of the I-controller part would add to the
dynamic gain of the process, eventually causing instability with the proportional
gain set to a level that may safely be used with P-control only.

When the Bode plot of the PID-controller is moved towards smaller frequencies,
i.e. when 1/D is diminished, the D-part of the controller is effective in dimin-
ishing the phase lag of the open loop around w,, and thus it speeds up con-
trol. At the same time frequency dependent gain of the D-controller part adds
to the process gain, and this can eventually cancel the effect of the phase lead.
This depends, of course, on the slope of the amplitude-frequency function of th/‘:
process. !

The above considerations are also readily applicable to PI- and PD-controller
combinations.

-902” A6,

-1802

11 we 1iD

Fig. 5.58. Bode plot of process with PID-controller
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Gain and phase margins

Controllers are, of course, never set to the stability limit defined by Eq.(5.200).
In Section 5.2.1 we have seen that if quarter-amplitude damping is aimed for, the
controller must be set to obtain a loop gain of 0.5:

lL(lwcr)‘ =148"4C IgS (lwcr)‘ IgC(lwcr)| =0°5

This means a gain margin of 1/0.5=2.0.
The definition of the gain margin is

gain margin = —lz—(ll—a—);r—)—l— (5.210)

and it expresses the distance from the stability limit. ,

A similar value is needed for the phase lag of the open loop. This is found in the
phase margin. Denote by ¢ (L= 1) the open loop phase lag at the frequency where
| L(iw)| =1, that is, at the gain crossover frequency. Then

phase margin=180°—¢(L=1) (5.211)

The phase margin is the phase shift which can be added to the phase shift of the
open control loop to. arrive at the stability limit of the closed control loop (at the
gain crossover frequency).

The gain and the phase margins are easily read from the Bode and Nyquist plots
of the open loop (Fig. 5.59).

[Gs| A+Im
1.0
| -¥ «::Re
-90%
A6
1802412 M
\
1/GM

Fig. 5.59. Gain and phase margins

Both the gain and the phase margins account not only for the damping, but also
for uncertainties in the knowledge of the process parameters. It is important to
draw attention to the fact that most chemical engineering processes are nonlinear:
their gain and also their time constants (including dead time) might be dependent
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on the operating point. Gain variations in the range of 1:10 are also possible. The
gain and phase margins (i.e. the controller parameters) must be set in consideration
of these facts.

The Nyquist stability criterion

Hitherto the simplified Nyquist stability criterion formulated by Eq.(5.200) was
used, which is readily applicable to monotonic open loop frequency functions. The
rigorous Nyquist criterion is used to solve more complex problems.

The simplest example for which the rigorous Nyquist criterion has to be applied
is the pure capacity process controlled by a PI-controller. The Bode and Nyquist
plots of the open loop are shown in Fig. 5.60. For w—0, the loop phase lag is
—180° and the loop gain is infinite: there are two integrators in the loop. With
increasing frequency the phase lag decreases towards —90° and the loop gain
decreases towards zero. The stability of this control loop can be checked by
drawing the Nyquist plot. Following the plot from =0 towards o= o0, the point
(=1, 0_;) is seen to be at the left, and thus the control loop is stable.

Conditional stability may occur in the case of chemical reactors in which
exothermic reaction occurs. Some of these reactors are unstable without control.
Continuous stirred tank reactors are first-order lag processes; at their unstable
operating point both the steady-state gain and the time constant are negative. The
transfer function is:

"AS AS
G = =
= =71 " Tood
100+
10
L +Im
1.0 ——
o 5 - +R£
(7] *5—'
-90°
../
-180°

Fig. 5.60. I process controlled by PI-controller
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Fig. 5.61. Stabilizing an unstable reactor

This process was dealt with in Section 5.3.4, Example 5.3.8. The Nyquist plot of
such a frequency function is shown in Fig. 5.61. It begins at point (—A4g, 0)
and ends at (0, 0). For a stable control loop |4g4c|>1 is to be set, then the
point (—1, 0) is seen to be at the left. It is unusual that the controller gain must
be increased to ensure stable operation.

When there are other dynamic elements in the control loop bes1des the reactor,
the controller gain may have a high and a low limit for stable operation. Suppose
that there are two first-order elements (e.g. the temperature sensor and the actuator
of the control valve) both having smaller time constants than that of the reactor
(of course, in absolute value). The transfer function of the process is:

—4 4 4
6s0=(357) (1) (s
() (—TRs+1 Tos+1)\Tys+1

The subscripts refer to the reactor, the temperature transmitter and the valve. The
Nyquist plot of the open loop frequency function of this process with P-control is
shown in Fig. 5.62. The two additional first-order elements shift the end of the plot
by 2 - (—90°) to —270°. The control loop is unstable both with too high or too low
controller gains.

Similar problems may occur with the control of multivariable systems.

The closed loop transfer and frequency function

The open loop transfer and frequency functions are obtained by multiplying the
respective functions of all dynamic elements in the control loop. The open loop
functions are not to be confused with those of the closed loop.

The frequency function of a negative feedback control loop is given in Eq.(5.4).
Since every control loop has at least two inputs the set point (or command variable)
and one load variable, there are at least two closed loop frequency functions:
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Fig. 5.62. Stability of control loop with unstable reactor and two small lags

’ . . Gs(i0)Ge(iw) 5212

for the set point: W (iw)= 17 Gs (i) Golic) (5.212)
‘ Gy (i)

for the load: = d 5.213

or the load W;(iw) 15 Ga (i) Gulicd) ( )

The closed loop frequency functions are denoted by W to distinguish them from
the corresponding open loop functions. All closed loop frequency functions of
the same control loop have the same denominator: 1+ L(iw), where the fre-
quency dependent vector L(iw) is to be added to the unit vector, which has zero
phase angle. The closed loop frequency functions can easily be calculated using
complex algebra, if the frequency functions of the process and the controller are
known. '

The closed loop frequency functions can be determined experimentally by
driving the closed loop by a sine signal (varying the frequency) at the set point
or at the load input, respectively, and recording the control signal, but this -
method is rather tedious and is rarely applied to chemical engineering pro-
cesses.

The closed loop frequency functions, of course, are characteristic of the behav-
iour of the control loop. Since we require that the control loop causes the control
signal to follow the set point signal exactly, with no phase shift at all frequencies,

‘ the required frequency function is

| W (iw)| =1, x W (iw)=0° for all w.
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In reality this is possible only for frequencies that are smaller than the open loop
critical frequency. There is a maximum gain at the closed loop resonant frequency,
which is a little lower than the critical frequency of the open loop. This situation
is shown in Fig. 5.63.

At the stability limit, the maximum closed loop gain is infinite and the resonance
frequency is equal to the open loop critical frequency.

The closed loop frequency functions may be used for the determination of
controller settings. The load frequency function, Eq.(5.213) is less often used for
this purpose, since it requires an additional knowledge of the frequency function
G, (iw), but it does not furnish substantially more information.

4 to set point change
wl PI control
A 6l P’control
10 Wi o 10l closed loop
’ to set point change ’ wi
Wi 054
o.ot % | @, 01 : .\\ B g
to disturbance @, Wer
0° Aw = 0" closed oo
Aw p [HW
PI con
il a6 AG N P contrtorlm
B0 90 open loop
Desired closed loop
frequency function
—180% e A
N\
N

Fig. 5.63. Bode plots of closed control loop frequency functions

Steady-state offset. Final value theorem

We have seen in Section 5.2.2 that, if a dead time process is controlled by a
P-controller, the control loop is unable to restore the control signal to its original
value after a step-like disturbance of the load variable, and it is also unable to make
the control signal exactly follow a change in the set point. In other words, the error
signal is different from zero, not only during a transient, but also in the steady state.
This steady-state offset forced us to incorporate integral action in the controller.
However, we did not examine the problem of steady-state error for the general
case.
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The final steady-state value of any linear time function can be determined using
the final value theorem, Item 5 in Table 5.3, if the Laplace transform of the function
is known:

f(00)= lim sF(s) (5.214)
50

It is important to check the stability of the function, before applying the final value
theorem, because it gives no information about stability. ‘

The Laplace transform of ¢, the control variable for the closed negative feed-
back control loop, is calculated using Eqs (5.100) and (5.101) in Section 5.3.4,
respectively:

for a set point change

_|_Gc(9)Gs(s)
C(s)= [———————1 +CGC 56 (s)] R(s) (5.215)
for a disturbance g
_ Gp(s)
o= a6 Y 4210)

Tracking the set point
If the control signal follows the command, the error is zero (cf. Fig. 5.39):

e=Cy—C=r—=¢ (5.217)

Combining Eq.(5.215) with the Laplace transform of Eq.(5.217), we obtain the
Laplace transform of the error function:

R[G5
E0=R0~(r ) RO

1
~<m)"® (5:218)

Suppose a unit step in the set point: R(s)= %, then the final value of the error
is [Eq.(5.214)]

(GG \1 . GeGsl)
=i (eam) =t Hawew 62
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To obtain e(w0)=0, the product G¢(s)Gs(s) must go to infinity if s goes to
zero. This means that either the controller or the process must contain at least one
integrator (the transfer function of which is 4/s, cf. T able 5.2). o

In the absence of an integrator, the controlled variable follows the set pointWWith
some error. The magnitude of the error is calculated from Eq.(5.219). To facilitate
the calculation, consider that

lime ™5 =1

s—0

lim 1 =1
=0 (Ty s+ 1D)"(Tys+1) (T°s* +2ETs+ 1)

fim LSty

s—0 T2S+ l

Thus, if the process is a higher-order lag, possibly also with dead time, but
contains no integrating element, then

lim Asgs(s)=As
s—0

If the controller is a P-controller
Ge= Ac
or a PD-controller:
Go=Ac(1+Ds)
then o
lim Acgc(s)=Ac

s=0

Substitute into Eq.(5.219):

. 1 1 1
o) = lim Balg 5.220
e(e) s‘ﬁos(1+Acgc(s)Asgs<s)>s T+ AcA; (3.220)

Equation (5.220) indicates that a P- or a PD-controller may be used to control
such processes, for which a small steady-state error can be tolerated and the
process stability allows the use of a high-proportional gain. Recall from Eq.(5.205)
that

VIV S S— (5.221)

dc (iwcr) Js (iwcr)

For the reader’s orientation we may say that to a unit step a steady-state error
¢(00)=0.05, i.e. 5% of the step point change, is generally acceptable.



372 5 Principles of chemical process control

Disturbance rejection

The controller is expected to restore the controlled variable to the same steady-
state value as it had before the disturbance: é(c0)=0.

- Using Eq.(5.216), in response to a unit step disturbance: D(s)= }—, we obtain
s

o G 11 _, Gas)
é(e0)= lim S[l +Gc(s)Gs(sJ S .G (5.222)

The following situations are possible:

1. G¢(s) implies a P- or PD-controller. Gg(s) contains a term 1/s, but G4(s)
does not. Then é(c0)=0.

2. G¢(s) implies a P- or PD-controller. Both G,(s) and Gg(s) are integrating
processes containing a term 1/s. Then é(o0)=A4/AcAs.

3. G¢(s) implies a PI- or PID-controller, containing a 1/s term. Then
¢(o0)=0, except in the case when G,(s) means an integrating process, but Gg(s)
not.

Thus the steady-state error for both command signal changes and disturbances
is generally eliminated by using an integrating mode in the controller, and is
diminished by the use of high loop gain, K= A44;.

5.3.8 Controller tuning

Control performance criteria

In order to determine optimum controller settings we need some quantitative
criteria to compare different control systems.

The performance criteria are not only used to determine the P, I, D parameters
of the controller. Hitherto we have supposed that the parameters of the controlled
process are given. In reality, even in the case of an existing industrial process, it is
possible to choose different types of sensors and final control elements, to decide
their placement, and thus, to influence the parameters of the process. As an
example: the product composition of a distillation column may be controlled by (a)
measuring the boiling temperature continuously at an intermediate tray; (b) mea-
suring the composition intermittently by a process analyser from (b4) a continuous
vapour sample taken from the column head or (b4) a continuous liquid sample
taken from the reflux accumulator. In case (b) there is a dead time incorporated in
the intermittent analysis, the effect of which can be evaluated by use of the
performance criteria.

The desired performance of a closed-loop system can be specified in the time
domain. The traditional test input signal is a step change in the set point. The
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performance criteria based upon the response of the control signal are shown in

Fig. 5.64:
(i) overshoot: A/B. This can be estimated from the phase margin of the open

loop frequency function, or from the maximum, M, of the closed loop frequency
function to the set point as follows:

Phase margin M Overshoot

<30° =15 M-0.1
30°-40° 1.5-1.3 M
60° 1.0 M

(i) decay ratio or damping: A/C. This can be estimated from the gain margin;

(iii) rise time: the time necessary to first reach the new steady-state value;

(iv) response time: the time it takes for the amplitude of the oscillations to decay
to some fraction (generally 4+ 5%) of the final change of the control signal;

(v) period of oscillations, T,. For a well-tuned control loop the response time
is about 3 times the period. The period is estimated as the critical period of the open
loop.

(vi) steady-state offset; estimated by the final value theorem.

The integral performance criteria are based upon the error e=c,,—c during
the response time (Fig. 5.64). They may be calculated by computer for control
loops with no offset or determined by experiment.

The error integral: (5.223)
_ 7 has the disadvantage of giving
El= 05 eds zero at the stability limit;
Integrated absolute error: (5.224)
IAE= | |e|dt given the total arefl at both
b sides of zero error;

< |
‘ e ! ! TP.cr
N
Cget
)
| _cloo) __‘ A e o _-joffset 5o
j T ; —————————— 5%
f
e |
| B |
' |
| -
®o=CsetTTrige Time | : —
<= Response time | Time

Fig. 5.64. Performance criteria based on closed loop step response
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Integrated square error: (5.225)
ISE= | & dt confers a penalty on overshoot;
0
Integrated time-wéighted absolute error: (5.226)

implies a penalty at long

ITAE= j]eltdr .
s response times.

" The optimum controller settings determined by the various criteria are different.
Which criterion is to be used depends on the process.

Quick estimation of the error integral

This method can be used for a quick choice between different control systems.
The best control system is that for which:

K. w,=max (5.227)

This quick criterion is based upon the step response, Fig. 5.64 and the error
integral, Eq.(5.223). It is supposed that the decay ratios in the control systems to
be compared are equal and thus the oscillations are similar, and only the error
areas under the first peaks need to be considered.

The area of the first peak is proportional to the product of its height and its
length. The length of a peak is half the oscillation period; thus it is inversely
proportional to the oscillation frequency, which, in turn, can be roughly estimated
as the critical frequency. As a consequence, the error integral is inversely propor-
tional to the critical frequency. It is important to note that when comparing
controller settings, the phase shift of the controller is to be included in the calcula-
tion of the critical frequency.

The height of the first peak depends only on K= As4., the open loop gain
product, which has been demonstrated by experience. Similarly to the steady-state
offset (with a P-controller only), which is proportional to 1/(1+ AgAc); cf.
Eq.(5.220), the peak height is also proportional to 1/(1+ K), not only for P-, but
also for PI-controllers; and this may be also used for PID-controllers for rough
estimation. For high values of K we can neglect 1 as well as K, and since for a
certain decay ratio K/K,,, must be fixed, we may conclude that the height of
the first peak is inversely proportional to K,,,,.

Thus we find that

-

1

T a)Cl'

El~

and for the optimum control system

El=min, K. 0, =max
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Controller selection

To make a decision upon the control mode to be selected for a given process, let
us summarize the features of the various control modes:

Proportional mode:

(i) produces no phase lag, thus it does not slow down the response of the
process;
(&) is unable to eliminate offset, except in the case of an integrating process.

Integral mode:

(i) eliminates offset,
(if) exhibits phase lag (max. —90°) as well as frequency dependent gain, thus it
has a retarding and a destabilizing effect.

Derivative mode:

(i) unable to eliminate error as unique control mode;
(i) produces phase lead (max. + 60° for real controllers), thus speeds up control
and has a stabilizing effect.

A three-mode PID-controller seems to be the best since it confers all kinds of
benefits. But, at the same time, it presents a more complex tuning problem, which
is hard to overcome, particularly with the nonlinear processes frequently encoun-
tered in chemical engineering. Recall that the PID parameters ought to be tuned

to have %< w0<—é—, which is hard to obtain if w, changes with the operating

point.
P-controller

This is the cheapest device and is the simplest to tune. It is used for control
problems where offset is allowed or even desirable. An example of the latter is the
level control in a buffer tank used to average out inflow fluctuations before a
process which requires constant feed.

P-control may also be used for processes where offset is undesirable, but whose
characteristics allow the use of a very high loop gain, K. Such processes are:
single-capacity processes (integrating or first-order lag), which have a —90° mini-
mum phase; and second-order lag processes, with —180° minimum phase.

It ought to be noted here, that control loops containing only one or two
capacities rarely exist, since the sensing instrument, the signal transformer and the
final control element also represent time lags. These types of device may be con-
sidered as first-order elements, their time constants ranging between 0.2 to 30 s.
But, if the control loop comprises one capacity with a dominant time constant at
least one order of magnitude greater than the second greatest, then the process may
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be treated as a single capacity process and it may be controlled by a P-controller
set to high loop gain, K. Such processes are: liquid tanks, stirred tank reactors, gas
pressure controllers.

Example 5.3.11. Control of a process with dominant time constant.

Consider a liquid vessel having a time constant of 30 min. The time constant of
the level transmitter, the pneumatic signal transmission line and the pneumatic
control valve actuator sum together to 1 min. Although the transmitter and the
valve actuator are first-order elements, the sum of the smaller time constants may
be treated as pure dead time. This is an approximation, but it is on the safe side,
since the dead time is less advantageous to control than a multicapacity system.

The natural period of the process is calculated as that of a single capacity, dead
time process. Suppose the dominant time constant exhibits a —90° phase lag at the
natural period, then (cf. Table 5.3)

90°
Ty

'—CUO TD“‘90°= —1800, 600=
Tp,(): —2'7}:‘ =4TD=4 min
Wy

Verify: ¢(T'=30 min) =arctan (—wy T) =
=arctan (-— %Tn . 30) =—98.6°

At Tp =4 min period, the dynamic gain is:
for the dead time: 1
for the first-order lag:

19(i00)| = —ee = ! ~0.021

2.2 2
V14T \/1+(30-24£)

The maximum loop gain is

1 1
Kmax = . =
|gs(iwy)| 0.021

=47.6

To obtain quarter amplitude damping, the loop gain is set to

K=238
The error to a unit step change in the set point is
e(o0)= 1 =0.04, acceptable

1+K
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PI-controller

This is used when offset is not tolerable and the process has no dominating time
constant. A PI-controller may also be used for processes dominated by dead time.
It has the disadvantage of rendering the control more sluggish due to the time lag
of the I-controller.

PID-controller

The D action produces a phase lag of about 60° (in a real controller). This almost
cancels the phase lag of one capacity (the minimum phase is —90°). Thus it may
decrease loop phase lag and increase the critical frequency in the case of processes
consisting of three or four capacities, and speed up control substantially. D action
is of no help in the case of processes dominated by dead time, because a dead time
element corresponds to an infinite capacity system, of which only one is cancelled
by D action.

D action cannot be applied to processes with substantial measurement noise, €.g.
flow control.

Controller tuning

Several tuning tables giving controller seitings are offered in handbooks. These
are based upon some performance criteria applied to an appropriate process
model. The simplest process model is a first-order lag with dead time, with the
transfer function Age~To0

Glo)= Ts+1

(5.228)
The Ziegler—Nichols and the Cohen—Coon tuning tables are based upon
this model and give controller settings for quarter-amplitude damping. The
Cohen—Coon settings were determined using the ISE criterion.
The parameters of the process model are determined from the process reaction
curve, as shown in Fig. 5.65. The process reaction curve is the open loop response

Input: step a
to manipulated variable
c ——(’;‘(_(I—)l ————— ?’r
Aga
l g TIME
0 T

Fig. 5.65. Process reaction curve
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of the controlled variable to a unit step input in the manipulated variable. All
elements of the control loop must be included in the response, except the controller.

The determination of the parameters can be seen in Fig. 5.65. A tangent is drawn
to the inflection point of the process reaction curve. The model dead time is
determined as the time at which this tangent intersects the base line. The time at
which the tangent intersects the 100% response line is the sum of the model time
constants, 7'+ Tp,. The model gain factor, 4s, is, of course, the 100% response
to unit input. ‘

There are some difficulties in taking the process reaction curve. It may take a
long time to obtain 100% response. It is difficult to draw the tangent line accurate-
ly. Thus the controller settings so obtained will be inaccurate, too.

The model parameters, critical period Tp ., and critical gain Ac o, may be
determined more exactly. The experimental determination of these parameters
involves the cycling method described in Section 5.2.6. They may also be deter-
mined from the open loop frequency function of the process, cf. Section 5.3.7. The
controller settings based on these parameters are also given in Table 5.].

Adaptive and optimal control

Most chemical engineering systems are nonlinear and if their operating point is
changed, their gain factors and time constants change too. This may cause instabil-
ity in a well-tuned control loop, and make it necessary to re-tune control loops’
frequently.

This difficulty may be overcome by adaptive control. Adaptive control means
automatic adaption of the controller settings to the varying process parameters. Its
simplest form is gain adaptive control, when only the controller gain is varied.
Since process parameter changes are mostly connected with changes in the flow
rate through the process, gain adaptive control may be implemented by measuring
the position of the control valve which manipulates the flow rate, and feeding the
correlation between valve position and controller gain into a microprocessor
controller or into a computer, which adjusts the controller settings.

Self-tuning controllers are able to set all their tuning parameters by the use of
some criterion, e.g. quarter-amplitude damping or the integral performance
criterion. Adaptive control is best implemented in the case of direct digital control,
i.e. when the controller functions are performed by a digital computer.

Optimal control may also be performed by computer control, but in this case by
using supervisory control. In this case the computer furnishes the set point (com-
mand signal) to the controller, having determined the optimum operating point of
the controlled process. The controller accepting the set point and controlling the
process may be a digital or a conventional analogue controller.
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5.4 The state space method
5.4.1 The state of a system

The state of any system means the past, present, and the future of the system.
The state space method gives all this information. It is not limited to linear systems:
it is capable of describing nonlinear and variable parameter systems, t0o. Using the
state space method it is possible to investigate the system in the time domain, since
it depends on the past history of the system. The classical linear methods are
capable of describing linear systems especially in the frequency domain, and they
neglect initial conditions.’ .

The state space method uses the so-called state variables and state equations to
determine the state and the dynamic behaviour of the system. The state variables
are not always the output variables of the system and they cannot always be
measured or observed. The set of the state variables x,(7), x,(), ..., x,(¢) must
satisfy the following two conditions:

1. At any entirely randomly selected instant of time (¢=1,) the state variables
[,(20), X2(fo), - - -» Xa(2o)] describe the initial condition of the system [x.(%),
x2(t0)9 ] xn(to)}'

2. The inputs of the system have to be specified for all 121, then the state
variables completely determine the behaviour, the state of the system at any
time ¢.

Example 5.4.1

Determine the state variable of a perfectly mixed tank reactor using the first-
order reaction equation and its state equation (Fig. 5.66).

The well-known differential equation of such a system is:

799 4 o= dge, (5.229)
dt

The concentration in the reactor (c;) completely specifies the state of the sys-

tem, so it is the state variable (x).

Co

o

4]
Fig. 5.66. State variables of a multivariable system
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Laplace transform and solve the equation (c¢; cannot be neglected at =0,
¢,(0) is a constant):

Agcy(8)=c,(8) + Te,(s)s—c,(0)]. (5.230)
Rearranging:
_ Asco(s) | Tei(0)
“O=T31s T 1415 (5:231)

Inverse transform Eq.(5.231) in the case of step disturbance of ¢, at ¢ >0:

e()=Aseo(1—eT)+c,(0)e T (5.232)

It is clear that if ¢,(0) and the input at ¢z >0 are known, the state of the system
is determined. Thus ¢, satisfies the basic requirements for a state variable. Rear-
ranging Eq.(5.229) one obtains:

de 1 A

G- Lot Za, (5.233)
which is the state equation of a first-order element. It is usual to denote the state
variable by x, the input variable by , and the output variable by y. Generally, the
state equation is:

dXW) _ () +bu(t) (5.234)
and the so-called output equation is:
y(@)=cx(t)+du(t) : (5.235)
In Example 5.4.1 the output equation is simply:
y(@)=x() (5.236)

5.4.2 State equations of multivariable systems

Consider a linear multivariable system with k inputs and m outputs (see Fig.
5.67). '
The state variables are x;, x, ... x,. The system dynamics are described by n
first-order differential equations, the state equations being similar to Eq.(5.234)

dx; (1)
S = %) - x(wn wd (5.237)
inputs outputs
Uy —e=={ linear system [—== /1
Uy —m . e }.‘2
: XpXn. .o ... Xn .
Uy — - Y

Fig. 5.67. To Example 5.4.1
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or

& (z) iau x; (1) + Z by ju,(t) (5.238)

The output equations are:

()= Y ¢, ;%) + Y, 4 u,(t)  where (5.239)
i=1 v=1 v=1,2...%k

It is much more convenient to use the matrix form of representation:

d"(’) — Ax(0)+Bu(t) =f[x(0), u(?)] (5.240)
or
x=Ax(t)+Bu(r) (5.241)
The output equation is
y()=Cx(t)+Du(?) (5.242)
where ~ _
dx,(2)
dz
x,(2) .
dx,(?) is the column
2=|"q; x = x;(t) matrix of state
. :(t) variables
. xn
dx, (1)
- dt =
[ (2)
u = | w® %s the colgmn matrix of
= : input variables
L (1)
C »1(2)
_ | »0 is the column matrix of
L= : output variables
| V)
a4y dp ain
A= | @ is an n x n square matrix,
I I the state matrix
L ay e nn
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B bl 1 b12 o .. blk ]
B | bu is an n x k matrix, the
input matrix
by by
ETA4Y) Cin ]
c= | e isanmxn rpatnx, the
output matrix
| Cop e Conn
B dll dlZ dlk T
p= | & is an m x k matrix, the
: transmission
- dml """" dmk -

5.4.3 State equations of higher-order elements

Consider an nth order linear system with single input and single output. Its
general differential equation is:

n n—1 n-2
DO 40 20 0T 20 6 2O oy =u)
! ! (5.243)
The state variables are:
x(H)=y(2)
dy(t
xz(t)':%
! (5.244)
n—1
x(n)y= 20
dt
and the state equations:
dx, (¢
20 -0
dx,(¢
0
: (5.245)
dxn—l(t) =xn(t)

d¢
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dx(;lft) = ~_anxl(’")"'an_lxz(t)“ @ Xy (D) —

—ayx, (1) +u(t)

The output equation is very simple:

y(0)=x,(1) (5.246)

The matrix representation of Eqs (5.244)—(5.249) is:

Cdx, ()T T 1r T ol

__Elf_)_ 0 1 0...0 x,(2) 0

dx,(t)

=5 l=1 0 0 10 =M1 0Lue (5247
dx,(t) '

Za ] [ e —a||=O] 1)

and the output matrices are:

C=[1 0 0...0]

and

D=0 (null matrix)

because the output equation is a simple scalar equation [Eq.(5.247)].

Real systems are often both higher-order and multivariable. The state space
method offers the possibility to reduce the dynamic mathematical model of such
real systems to a set of first-order differential equations. This is the method applied
by TACS (Teaching Aid for Control Studies).

Example 5.4.2
Determine the state variables and state equations of a general second-order
element.
The differential equation is:
dy(t) dy()
2 2T =u(t 5.248
L2 26T RE +y()=u() (5.248)
The state variables:
x(H)=y(t)
dv(t (5.249)
xy(t)= Li0]

dt
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and the state equations:

10—t
; 1 % (5.250)
¢
2 - )= F )+ )
In matrix form
%l 0 1 x,(¢) 0
= . + ~u(t 5.251
o) I TN 4 O T
dt " T||™ T
The output equation is:
y@)=x,(t) (5:252)

Exémple 5.4.3
Consider a mixing unit (Fig. 5.68) and determine its state variables and state
equations. ¢, and c, are constant. The other variables are time-dependent. Flows

can change.
This is a multivariable (2) system. The total mass balance:
%’tﬁ =W+ Wy— W, (5.253)
The component balance:
i%{tﬁl = We, + Wic,— Wie, (5.254)
dc3
3(’) =W, + Wie,— Wies (5.255)
W ¢y Wy ¢

R

Wy c3
Fig. 5.68. To Example 5.4.3




5.4 The state space method

385

Substituting the total mass balance into the component balance we obtain:

de,

Pl Wie, + Wae, — Wies —[es(W + W, — W3)] (5.256)
de,
VR = ilei =)+ Wi —e) (5:257)
The state variables are: ¥V and ¢;
The state equations are:
id‘tf = W+ Wy — W, (5.258)
des(t) <W,(t) I’Vz(t)) ¢ &
- hd 2 25
T 7R o)+ % wi(0)+ T (1) (5.259)
This is a variable parameter equation.
The state equations in matrix form are:
dey(?) _.,(.ILVL _Iﬁ,_) o
dr v ) Y e0) vy ° ;V/‘E’;
= . t
av( :
—a—f-l 0 ol v 11 =1 |m@
(5.260)

- The state and input matrices are also functions. They are not constant.

The output equation is simply

y(O)=c5(1)

(5.261)

This example can be solved in a different way, so that the state and input
matrices should be constant. In this case linearization and perturbation variables
" have to be used. The linearization, of course, brings its usual error with it, but it

is much easier to solve.
The linearized state equations are:

) [=7%

B i | L i 4
a |- d |+ W, (5.262)
o oV 1 1 —1]|W

dr
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5.4.4 The solution of the state equations

The solution of the state equations

X=Ax+Bu

can be performed by the Laplace transformation method or by a classical method,
or some numerical method.

The most convenient way of solving the state equations is to use a computer.
There are many suitable numerical methods, such as the trapezoid, Euler, or
Runge-Kutta, etc. methods. The solution of the state equation is the dynamic
behaviour of the modelled system in the time domain.

5.5 Notation

S
o

constants

>
AN

gain factor

area

controlled variable

its Laplace transform
concentration
disturbance, load variable
@) its Laplace transform
derivative time constant
error

Nbba_ﬁgm NN
= «

E(s) its Laplace transform
gls)= —= ( )., ; g(iw)  normalized transfer or frequency function
G(s), G(Iw) transfer or frequency function

height

integral time constant

K loop gain

L(s) open loop transfer function
m  manipulated variable

J4 pressure

£ Laplace operator

t time

T time constant

Ty dead time

Ty period of oscillation




4

w

W (s), W (iw)
X

X(s)

y

Y(s)

%

w

Wy

Subscripts:

C
cr
S

Superscripts:

A
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volume

flow rate

closed loop transfer or frequency function
input

its Laplace transform

output

its Laplace transform

phase angle

frequency

natural frequency

refers to the controller
critical
refers to the process

steady state
deviation
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